Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/8861
Title: Thermal evolution of cation distribution/crystallite size and their correlation with the magnetic state of yb-substituted zinc ferrite nanoparticles
Authors: Vučinić-Vasić, Milica 
Bozin E.
Bessais L.
Stojanović, Goran 
Kozmidis-Luburić, Uranija 
Abeykoon M.
Jancar B.
Meden A.
Kremenovic A.
Antić, Boris 
Issue Date: 13-Jun-2013
Journal: Journal of Physical Chemistry C
Abstract: Evolution of the structural and magnetic properties of ZnFe 1.95Yb0.05O4 nanoparticles, prepared via a high-energy ball milling route and exposed to further thermal annealing/heating, was assessed in detail and correlation of these properties explored. While as-prepared spinel nanoparticles possess a high degree of inversion, heating of the sample to ∼500 C is found to rapidly alter the cation distribution from mixed to normal, in agreement with the known cation preferences. Under the same conditions the crystallite size only slowly grows. By further thermal treatment at higher temperatures, the crystallite size is changed more appreciably. An interrelationship among the lattice parameter, octahedral site occupancy, and crystallite size has been established. The observations are (a) both the site occupancy of Fe3+ at octahedral 16d spinel sites (N 16d(Fe3+)) and the cubic lattice parameter rapidly increase with an initial increase of the crystallite size, (b) the lattice parameter increases with increasing occupancy, N16d(Fe3+), and (c) there appears to be a critical nanoparticle diameter (approximately 15 nm) above which both the site occupancy and lattice parameter values are saturated. The magnetic behavior of the annealed samples appears to be correlated to the evolution of both the cation distribution and crystallite size, as follows. As-prepared samples and those annealed at lower temperatures show superparamagnetic behavior at room temperature, presumably as a consequence of the Fe3+ distribution and strong Fe3+(8a)-O-Fe 3+(16d) superexchange interactions. Samples with a nanoparticle diameter greater than 12 nm and with almost normal distributions exhibit the paramagnetic state. The coercive field is found to decrease with an increase of the crystallite size. Partial Yb3+/Fe3+ substitution is found to increase the inversion parameter and saturation magnetization. Detailed knowledge of the thermal evolution of structural/microstructural parameters allows control over the cation distribution and crystallite size and hence the magnetic properties of nanoferrites. © 2013 American Chemical Society.
URI: https://open.uns.ac.rs/handle/123456789/8861
ISSN: 19327447
DOI: 10.1021/jp403459t
Appears in Collections:FTN Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

27
checked on May 10, 2024

Page view(s)

20
Last Week
1
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.