Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/338
Nаziv: Surface functionalised adsorbent for emerging pharmaceutical removal: Adsorption performance and mechanisms
Аutоri: Turk-Sekulić, Maja 
Boškov, Novak 
Slavkovic A.
Garunovic J.
Kolaković, Slobodan
Pap, Ištvan
Dаtum izdаvаnjа: 1-мај-2019
Čаsоpis: Process Safety and Environmental Protection
Sažetak: © 2019 Institution of Chemical Engineers А highly effective adsorbent (PPhA) was designed using “acid catalyst” functionalisation and tested for six emerging PhCs (sulfamethoxazole (SMX), carbamazepine (CBZ), ketoprofen (KP), naproxen (NPX), diclofenac (DCF) and ibuprofen (IBF)) in a batch study. Characterisation results (BET, SEM, FTIR, XRD and pHzpc) showed that the functionalisation process generates a microporous material with a multitude of new functional groups (such as phosphate and phosphonate) present on the surface. Adsorption capacity reached near maximum within 10 min while equilibrium was obtained in 60 min. Findings suggest that the mass transfer was governed mainly by intraparticle diffusion processes through formation of H-bonds, π–π and n–π electron donor–acceptor interactions. A pH influence study showed that electrostatic interactions played a minor role in the overall removal mechanism. The magnitude of E was <8 kJ mol−1 for all studied PhCs, indicating that adsorption is mainly due to physisorption. Equilibrium data were best represented by the Freundlich model and the theoretical monolayer adsorption capacities were 17.193, 17.685, 19.265, 17.657, 21.116 and 23.332 mg g−1 for SMX, CBZ, KP, NPX, DCF and IBF, respectively. Based on these results, this PPhA is proposed as an excellent adsorbent for PhC removal.
URI: https://open.uns.ac.rs/handle/123456789/338
ISSN: 9575820
DOI: 10.1016/j.psep.2019.03.007
Nаlаzi sе u kоlеkciјаmа:FTN Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

107
prоvеrеnо 09.09.2023.

Prеglеd/i stаnicа

36
Prоtеklа nеdеljа
5
Prоtеkli mеsеc
8
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.