Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/32528
Title: Machine Learning Prediction Based Adaptive Duty Cycle MAC Protocol for Solar Energy Harvesting Wireless Sensor Networks
Authors: Sohail Sarang
Goran Stojanović 
Michael Drieberg
Stevan Stankovski 
Kishore Bingi
Varun Jeoti
Keywords: Machine learning;solar energy prediction;adaptive duty cycle;energy harvesting aware communication;MAC protocol;EH-WSNs
Issue Date: 16-Feb-2023
Project: AQUASENSE
Journal: IEEE Access
Abstract: The dynamic nature of energy harvesting rate, arising because of ever changing weather conditions, raises new concerns in energy harvesting based wireless sensor networks (EH-WSNs). Therefore, this drives the development of energy aware EH solutions. Formerly, many Medium Access Control (MAC) protocols have been developed for EH-WSNs. However, optimizing MAC protocol performance by incorporating predicted future energy intake is relatively new in EH-WSNs. Furthermore, existing MAC protocols do not fully harness the high harvested energy to perform aggressively despite the availability of sufficient energy resources. Therefore, a prediction-based adaptive duty cycle (PADC) MAC protocol has been proposed, called PADC-MAC, that incorporates current and future harvested energy information using the mathematical formulation to improve network performance. Furthermore, a machine learning model, namely nonlinear autoregressive (NAR) neural network, is employed that achieves good prediction accuracy under dynamic harvesting scenarios. As a result, it enables the receiver node to perform aggressively better when there is sufficient inflow of incoming harvesting energy. In addition, PADC-MAC uses a self-adaptation technique that reduces energy consumption. The performance of PADC-MAC is evaluated using GreenCastalia in terms of packet delay, network throughput, packet delivery ratio, energy consumption per bit, receiver energy consumption, and total network energy consumption using realistic harvesting data for 96 consecutive hours under dynamic solar harvesting conditions. The simulation results show that PADC-MAC provides lower average packet delay of the highest priority packets and all packets, energy consumption per bit, and total energy consumption by more than 10.7%, 7.8%, 81%, and 76.4%, respectively when compared to three state-of-the-art protocols for EH-WSNs.
URI: https://open.uns.ac.rs/handle/123456789/32528
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2023.3246108
Rights: Attribution-NonCommercial-NoDerivs 3.0 United States
Appears in Collections:FTN Publikacije/Publications

Files in This Item:
File Description SizeFormat
IEEE Access.pdfIEEE Access1.99 MBAdobe PDFView/Open
Show full item record

Page view(s)

48
Last Week
0
Last month
0
checked on Mar 15, 2024

Download(s)

16
checked on Mar 15, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons