Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/28
Title: Investigating levels of organic contaminants in Danube River sediments in Serbia by multi–ratio equilibrium passive sampling
Authors: Rusina T.
Smedes F.
Brborić, Maja 
Vrana B.
Issue Date: 15-Dec-2019
Journal: Science of the Total Environment
Abstract: © 2019 Elsevier B.V. The Danube River is a large transboundary river with many tributaries. Pollution from industries, municipal wastewater and navigation is discharged into the river directly or via its tributaries. These discharges can adversely contribute to the water and sediment quality, posing a risk to aquatic life. Contaminants with low water solubility tend to accumulate in suspended solids, which deposit in riverbed sediments. Subsequently, their levels in sediment represent a time integrated sample indicating the pollution in the watercourse. However, total concentrations in sediment do not directly represent the exposure risk to aquatic life as accumulation in sediment heavily depends on its properties, i.e. the amount of organic material and its composition, which is difficult to characterize as any natural material. To provide contaminant concentrations on a defined basis, surface layer riverbed sediment samples collected at eleven locations along the Danube stretch in the territory of Serbia in 2012, were ex-situ (in the laboratory) equilibrated with silicone passive samplers of constant accumulative properties, using the multi-ratio equilibrium passive sampling approach. Contaminant's equilibrium concentrations in passive samplers are mutually comparable in time and space and are better measure for bioavailability than total sediment concentrations. Uptake in the passive sampler converted to equivalent freely dissolved (pore-) water concentrations agreed well with those obtained from surface water passive sampling carried out within the Joint Danube Survey 3 in 2013. Furthermore, equilibrium passive sampler PCB concentrations, converted to lipid-based concentrations, agreed well with concentrations measured in fish sampled in the Danube several years earlier. Out of eleven priority substances, only fluoranthene exceeded the EU EQS in water, while the EQS for biota was exceeded or approached for fluoranthene and benz[a]pyrene, and hexachlorobenzene.
URI: https://open.uns.ac.rs/handle/123456789/28
ISSN: 489697
DOI: 10.1016/j.scitotenv.2019.133935
Appears in Collections:FTN Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

19
checked on May 3, 2024

Page view(s)

34
Last Week
5
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.