Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/2693
Nаziv: Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts
Аutоri: Nikolić, Milica
Borovac, Branislav 
Raković, Mirko 
Dаtum izdаvаnjа: 1-феб-2018
Čаsоpis: Multibody System Dynamics
Sažetak: © 2017, Springer Science+Business Media Dordrecht. The main indicator of dynamic balance is the ZMP. Its original notion assumes that both feet of the robot are in contact with the flat horizontal surface (all contacts are in the same plane) and that the friction is high enough so that sliding does not occur. With increasing capabilities of humanoid robots and the higher complexity of the motion that needs to be performed, these assumptions might not hold. Having in mind that the system is dynamically balanced if there is no rotation about the edges of the feet and if the feet do not slide, we propose a novel approach for testing the dynamic balance of bipedal robots, by using linear contact wrench conditions compiled in a single matrix (Dynamic Balance Matrix). The proposed approach has wide applicability since it can be used to check the stability of different kinds of contacts (including point, line, and surface) with arbitrary perimeter shapes. Motion feasibility conditions are derived on the basis of the conditions which the wrench of each contact has to satisfy. The approach was tested by simulation in two scenarios: biped climbing up and walking sideways on the inclined flat surface which is too steep for a regular walk without additional support. The whole-body motion was synthesized and performed using a generalized task prioritization framework.
URI: https://open.uns.ac.rs/handle/123456789/2693
ISSN: 13845640
DOI: 10.1007/s11044-017-9572-9
Nаlаzi sе u kоlеkciјаmа:FTN Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

13
prоvеrеnо 20.11.2023.

Prеglеd/i stаnicа

22
Prоtеklа nеdеljа
8
Prоtеkli mеsеc
0
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.