Please use this identifier to cite or link to this item:
https://open.uns.ac.rs/handle/123456789/253
Title: | On the characterization of novel biologically active steroids: Selection of lipophilicity models of newly synthesized steroidal derivatives by classical and non-parametric ranking approaches | Authors: | Karadžić Banjac, Milica Kovačević, Strahinja Jevrić, Lidija Podunavac-Kuzmanović, Sanja Mandić, Anamarija |
Issue Date: | 1-Jun-2019 | Publisher: | Elsevier | Journal: | Computational Biology and Chemistry | Abstract: | © 2019 Elsevier Ltd In this paper, the guidelines for the interpretation of the results of quantitative structure-retention relationship (QSRR) modeling, comparison and assessment of the established models, as well as the selection of the best and most consistent QSRR model were presented. Various linear and non-linear chemometric regression techniques were used to build QSRR models for chromatographic lipophilicity prediction of a series of triazole, tetrazole, toluenesulfonylhydrazide, nitrile, dinitrile and dione steroid derivatives. Linear regression (LR) and multiple linear regression (MLR) were used as linear techniques, while artificial neural networks (ANNs) were applied as non-linear modeling techniques. Generated models were statistically evaluated applying different approaches for model comparison and ranking. Two non-parametric methods (generalized pair correlation method – GPCM and sum of ranking differences – SRD) were used for model ranking and assessment of the best model for chromatographic lipophilicity prediction using experimentally obtained logk values and row average as a reference ranking. Both, GPCM and SRD, provided highly similar model choice regardless on a different background. These results are in agreement with the classical approach. | URI: | https://open.uns.ac.rs/handle/123456789/253 | ISSN: | 14769271 | DOI: | 10.1016/j.compbiolchem.2019.03.001 |
Appears in Collections: | FINS Publikacije/Publications TF Publikacije/Publications |
Show full item record
SCOPUSTM
Citations
4
checked on May 10, 2024
Page view(s)
38
Last Week
11
11
Last month
2
2
checked on May 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.