Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/2041
Nаziv: Shallow geothermal energy integration in district heating system: An example from Serbia
Аutоri: Kljajić, Miroslav 
Anđelković, Aleksandar 
Hasik V.
Munćan, Vladimir 
Bilec M.
Dаtum izdаvаnjа: 1-јан-2018
Čаsоpis: Renewable Energy
Sažetak: © 2018 Elsevier Ltd Integration of shallow geothermal energy could effectively contribute to long-term improvement in the energy supply systems by slowing down the growth of energy consumption, changing the structure of used energy sources, and by modernizing communal energy infrastructure. Such integration is one way of addressing sustainability goals, ensuring better energy security and economic competitiveness, and making a contribution to environmental protection efforts. This paper examines the integration of local geothermal potential in the northern part of the Republic of Serbia and assesses the implications of using geothermal heat pump technology in a district heating system. This analysis considers different aspects of the proposed application and evaluates the environmental sustainability and viability of utilization of geothermal heat pumps for district heating. Energy, economic and environmental performance was assessed for infrastructure that supplies 1274 properties in collective residential building segment located in a densely populated city area. The assessment quantified performance in key energy, economic and environmental categories, focusing on the use stage of the system's life cycle. The main benefit of the geothermal heat pump system is the reduction of the inlet primary energy by at least 30% by avoiding the use of almost a million cubic meters of natural gas per year. This also results in a competitive energy cost of 17 EUR/MWh, an investment with internal rate of return of up to 38%, and a discounted payback period of 4.9 years. The geothermal heat pump system can bring energy and economic benefits but unfavorable environmental impacts, mainly due to the unfavorable electricity generation mix in the Republic of Serbia. The existing natural gas driven system was found to have lower impacts across all indicators but terrestrial eco-toxicity, natural land transformation and fossil depletion. In the climate change impact category, the existing system's impacts are 82% lower than those of the geothermal system.
URI: https://open.uns.ac.rs/handle/123456789/2041
ISSN: 9601481
DOI: 10.1016/j.renene.2018.11.103
Nаlаzi sе u kоlеkciјаmа:FTN Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

27
prоvеrеnо 20.11.2023.

Prеglеd/i stаnicа

37
Prоtеklа nеdеljа
5
Prоtеkli mеsеc
7
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.