Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/1715
Nаziv: Wear Resistance Increase by Friction Stir Processing for Partial Magnesium Replacement in Aluminium Alloys
Аutоri: Baloš, Sebastian 
Labus Zlatanović, Danka 
Janjatović, Petar 
Dramićanin, Miroslav 
Rajnović, Dragan 
Sidjanin L.
Dаtum izdаvаnjа: 26-мар-2018
Čаsоpis: IOP Conference Series: Materials Science and Engineering
Sažetak: © Published under licence by IOP Publishing Ltd. In this paper, the influence of friction stir processing (FSP) was evaluated as a way of increasing mechanical properties and a way of replacing the magnesium content in aluminium alloys. FSP was done on AA5754 H111 aluminium alloy, containing 3 % Mg, by using various types of tools and different welding speeds, rotational speeds and tilt angles. Wear test was done against SiC abrasive papers. SiC was used to simulate extreme abrasive wear conditions. The wear test was done on untreated AA5754 specimens, processed AA5754 specimens and untreated AA5083 H111 specimens, the latter containing 4.5 % Mg. AA5083 was chosen as an alternative to AA5754, but with a significantly higher Mg content. Base material microhardness was 60 HV1 and 80 HV1 for AA5754 and AA5083 alloys respectively. To find the effect of FSP on AA5754 alloy, microstructures were studied, mainly grain size in the stir zone. It was found, that an elevated processing and rotational speed, without tilt angle and the tool without a reservoir resulted in an increase in hardness of the AA5754 to 70 HV1, but with the occurrence of tunneling defect and the wear rate of 79.3 mg. Lower FSP parameters and a tilted tool with a reservoir resulted in microhardness of 68 HV1 and wear rate of 68.2 mg without tunneling. These wear values are lower than those obtained with unmodified Al-alloys: AA5754 97.2 mg and AA5083 86.3 mg. An increased wear resistance can be attributed to the combined effect of grain boundary strengthening mechanism and solid solution strengthening, versus only the latter in untreated alloys.
URI: https://open.uns.ac.rs/handle/123456789/1715
ISSN: 17578981
DOI: 10.1088/1757-899X/329/1/012017
Nаlаzi sе u kоlеkciјаmа:FTN Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

2
prоvеrеnо 03.05.2024.

Prеglеd/i stаnicа

23
Prоtеklа nеdеljа
2
Prоtеkli mеsеc
2
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.