Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/16774
Title: Zn(II) complex with 2-quinolinecarboxaldehyde selenosemicarbazone: Synthesis, structure, interaction studies with DNA/HSA, molecular docking and caspase-8 and -9 independent apoptose induction
Authors: Filipović Nenad
Bjelogrlic Snežana
Marinković Aleksandar
Verbić Tatjana
Cvijetić Ilija
Senćanski Milan
Rodić Marko 
Vujčić Miroslava
Sladić Dušan
Strikovic Zlatko
Todorović Tamara
Muller Christian
Issue Date: 2015
Journal: RSC Advances
Abstract: © 2015 The Royal Society of Chemistry. A new Zn(ii)-based potential chemotherapeutic agent was synthesized from the ligand 2-quinolinecarboxaldehyde selenosemicarbazone (Hqasesc). Single crystal X-ray diffraction analysis showed that the Zn(ii) complex consists of a cation [Zn(Hqasesc)2]2+, two perchlorate anions and one ethanol solvent molecule. The interaction of calf thymus (CT) DNA and human serum albumin (HSA) with the Zn(ii) complex was explored using absorption and emission spectral methods, and also has been supported by molecular docking studies. The complex has more affinity to minor DNA groove than major, with no significant intercalation. The HSA interaction studies of the complex revealed the quenching of the intrinsic fluorescence of the HSA through a static quenching mechanism. The antitumor activity of the ligand and the complex against pancreatic adenocarcinoma cell line (AsPC-1) and acute monocytic leukemia (THP-1) cells was evaluated. Both compounds are strong concentration-dependent apoptosis inducers in THP-1 cells. While Hqasesc in AsPC-1 cells induces apoptosis only at the highest concentration, treatment with the Zn complex shows a concentration-dependent apoptotic response, where the treated cells are arrested in the G1-to-S phase accompanied with extensive activation of caspase-8 and -9. These results indicate that the ligand and Zn(ii) complex display cell phenotype specific activity.
URI: https://open.uns.ac.rs/handle/123456789/16774
ISSN: 2046-2069
DOI: 10.1039/C5RA19849F
Appears in Collections:PMF Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

33
checked on Nov 20, 2023

Page view(s)

21
Last Week
6
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.