Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/662
Nаziv: Luteinizing hormone signaling is involved in synchronization of Leydig cell's clock and is crucial for rhythm robustness of testosterone production
Аutоri: Baburski, Aleksandar 
Andrić, Edita
Kostić, Marko
Dаtum izdаvаnjа: 1-јан-2019
Čаsоpis: Biology of Reproduction
Sažetak: © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Society for the Study of Reproduction. In mammals, circadian clock regulates concentration of many reproductive hormones including testosterone. Previously, we characterized pattern of circadian transcription of core clock genes in testosterone-producing Leydig cells. Here, the potential role of luteinizing hormone receptor (LHR)-cAMP signaling in synchronization of Leydig cell's circadian clock and rhythmic testosterone production were examined. Results showed that activation of LHR-cAMP signaling in primary rat Leydig cell culture increased Star/STAR and changed expression of many clock genes (upregulated Per1/PER1, Dec1/2, and Rorb, and downregulated Bmal1 and Rev-erba/b). Inhibition of protein kinase A prevented LHR-triggered increase in transcription of Per1 and Dec1. Effect of stimulated LHR-cAMP signaling on Leydig cell's clock transcription was also confirmed in vivo, using rats treated with single hCG injection. To analyze in vivo effect of low LH-cAMP activity on rhythmical Leydig cell function, rats with experimental hypogonadotropic hypogonadism were used. Characteristics of hypogonadal rats were decreased LH and testosterone secretion without circadian fluctuation; in Leydig cells decreased arrhythmic cAMP and transcription of steroidogenic genes (Cyp11a1 and Cyp17a1) were observed, while decreased Star/STAR expression retains circadian pattern. However, expression of clock genes, despite changes in transcription levels (increased Bmal1, Per2, Cry1, Cry2, Rora, Rorb, Rev-erba/b/REV-ERBB, Dec1, Csnk1e, and decreased Npas2 and PER1) kept circadian patterns observed in control groups. Altogether, the results strengthened the hypothesis about role of LH-cAMP signaling as synchronizer of Leydig cell's clock. However, clock in Leydig cells is not sufficient to sustain rhythmicity of testosterone production in absence of rhythmic activity of LH-cAMP signaling.
URI: https://open.uns.ac.rs/handle/123456789/662
ISSN: 00063363
DOI: 10.1093/biolre/ioz020
Nаlаzi sе u kоlеkciјаmа:PMF Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

31
prоvеrеnо 10.05.2024.

Prеglеd/i stаnicа

21
Prоtеklа nеdеljа
3
Prоtеkli mеsеc
0
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.