Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/32424
DC FieldValueLanguage
dc.contributor.authorMehwish Hanifen_US
dc.contributor.authorVarun Jeotien_US
dc.contributor.authorMohamad Radzi Ahmaden_US
dc.contributor.authorMuhammad Zubair Aslamen_US
dc.contributor.authorSaima Qureshien_US
dc.contributor.authorGoran Stojanovićen_US
dc.date.accessioned2021-12-07T09:32:55Z-
dc.date.available2021-12-07T09:32:55Z-
dc.date.issued2021-11-25-
dc.identifier.issn1424-8220en_US
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/32424-
dc.description.abstractLately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.en_US
dc.description.sponsorshipEuropean Commissionen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relationSTRENTEXen_US
dc.relation.ispartofSensorsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectfigure of meriten_US
dc.subjectacousto-opticen_US
dc.subjectSAWen_US
dc.subjectLiNbO3 ; ZnO; AlN; SiO2en_US
dc.subjectmultilayer structuresen_US
dc.subjectpiezoelectricen_US
dc.subjectopticsen_US
dc.subjectCOMSOLen_US
dc.subjectFEMen_US
dc.titleFEM analysis of various multilayer structures for CMOS compatible wearable acousto-optic devicesen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/s21237863-
dc.description.versionPublisheden_US
dc.relation.lastpage14en_US
dc.relation.firstpage1en_US
dc.relation.issue7863en_US
dc.relation.volume21en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.deptFakultet tehničkih nauka, Departman za energetiku, elektroniku i telekomunikacije-
crisitem.author.orcid0000-0003-2098-189X-
crisitem.author.parentorgFakultet tehničkih nauka-
Appears in Collections:FTN Publikacije/Publications
Files in This Item:
File Description SizeFormat
sensors-21-07863.pdf22.91 MBAdobe PDFView/Open
Show simple item record

Page view(s)

51
Last Week
8
Last month
2
checked on May 10, 2024

Download(s)

31
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons