Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/2707
Title: Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution
Authors: Mellert K.
Lenoir J.
Winter S.
Kölling C.
Čarni A.
Dorado-Liñán I.
Gégout J.
Göttlein A.
Hornstein D.
Jantsch M.
Juvan N.
Kolb E.
López-Senespleda E.
Menzel A.
Stojanović, Dejan 
Täger S.
Tsiripidis I.
Wohlgemuth T.
Ewald J.
Issue Date: 1-Feb-2018
Journal: European Journal of Forest Research
Abstract: © 2017, Springer-Verlag GmbH Germany, part of Springer Nature. Based on macroecological data, we test the hypothesis whether European tree species of temperate and boreal distribution maintain their water and nutrient supply in the more arid southern margin of their distribution range by shifting to more fertile soils with higher water storage than in their humid core distribution range (cf. soil compensatory effects). To answer this question, we gathered a large dataset with more than 200,000 plots that we related to summer aridity (SA), derived from WorldClim data, as well as soil available water capacity (AWC) and soil nutrient status, derived from the European soil database. The soil compensatory effects on tree species distribution were tested through generalized additive models. The hypothesis of soil compensatory effects on tree species distribution under limiting aridity was supported in terms of statistical significance and plausibility. Compared to a bioclimatic baseline model, inclusion of soil variables systematically improved the models’ goodness of fit. However, the relevance measured as the gain in predictive performance was small, with largest improvements for P. sylvestris, Q. petraea and A. alba. All studied species, except P. sylvestris, preferred high AWC under high SA. For F. sylvatica, P. abies and Q. petraea, the compensatory effect of soil AWC under high SA was even more pronounced on acidic soils. Soil compensatory effects might have decisive implications for tree species redistribution and forest management strategies under anthropogenic climate change. Therefore, soil compensatory effects deserve more intensive investigation, ideally, in studies combining different spatial scales to reduce the uncertainty associated with the precision of soil information.
URI: https://open.uns.ac.rs/handle/123456789/2707
ISSN: 16124669
DOI: 10.1007/s10342-017-1092-x
Appears in Collections:ILFE Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

20
checked on Sep 9, 2023

Page view(s)

12
Last Week
9
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.