Please use this identifier to cite or link to this item:
https://open.uns.ac.rs/handle/123456789/2228
Title: | Community detection in who-calls-whom social networks | Authors: | Truică, Ciprian-Octavian Novović, Olivera Brdar, Sanja Papadopoulos, Apostolos N. |
Issue Date: | Aug-2018 | Publisher: | Springer | Journal: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | Abstract: | Mobile phone service providers collect large volumes of data all over the globe. Taking into account that significant information is recorded in these datasets, there is a great potential for knowledge discovery. Since the processing pipeline contains several important steps, like data preparation, transformation, knowledge discovery, a holistic approach is required in order to avoid costly ETL operations across different heterogeneous systems. In this work, we present a design and implementation of knowledge discovery from CDR mobile phone data, using the Apache Spark distributed engine. We focus on the community detection problem which is extremely challenging and it has many practical applications. We have used Apache Spark with the Louvain community detection algorithm using a cluster of machines, to study the scalability and efficiency of the proposed methodology. The experimental evaluation is based on real-world mobile phone data. | URI: | https://open.uns.ac.rs/handle/123456789/2228 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-319-98539-8_2 |
Appears in Collections: | IBS Publikacije/Publications |
Show full item record
SCOPUSTM
Citations
6
checked on Nov 20, 2023
Page view(s)
13
Last Week
12
12
Last month
0
0
checked on May 3, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.