Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/20447
Title: Synthesis, characterization, anticancer evaluation and mechanisms of cytotoxic activity of novel 3-hydroxy-3-pyrrolin-2-ones bearing thenoyl fragment: DNA, BSA interactions and molecular docking study
Authors: Joksimović Nenad
Petronijević Jelena
Janković Nenad
Baskić Dejan
Popović Suzana
Todorović Danijela
Matić Sanja
Bogdanović Goran
Vraneš, Milan 
Tot, Aleksandar 
Bugarčić Zorica
Issue Date: 2019
Journal: Bioorganic Chemistry
Abstract: © 2019 Elsevier Inc. In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [K sv = (3.7 ± 0.1) and (3.4 ± 0.1) × 10 3 M −1 , respectively], an intercalative mode also confirmed through viscosity measurements. K a values, obtained as result of fluorescence titration of BSA with D13 and D15 [K a = (4.2 ± 0.2) and (2.6 ± 0.2) × 10 5 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region.
URI: https://open.uns.ac.rs/handle/123456789/20447
ISSN: 0045-2068
DOI: 10.1016/j.bioorg.2019.102954
(BISIS)114606
Appears in Collections:PMF Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

20
checked on May 10, 2024

Page view(s)

32
Last Week
8
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.