Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/1856
DC FieldValueLanguage
dc.contributor.authorBrkljač, Brankoen
dc.contributor.authorTrpovski, Željenen
dc.date.accessioned2019-09-23T10:18:10Z-
dc.date.available2019-09-23T10:18:10Z-
dc.date.issued2018-01-01en
dc.identifier.isbn9781538671702en
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/1856-
dc.description.abstract© 2018 IEEE. Sparse representation of structured signals requires modelling strategies that maintain specific signal properties, in addition to preserving original information content and achieving simpler signal representation. Therefore, the major design challenge is to introduce adequate problem formulations and offer solutions that will efficiently lead to desired representations. In this context, sparse representation of covariance and precision matrices, which appear as feature descriptors or mixture model parameters, respectively, will be in the main focus of this paper.en
dc.relation.ispartof2018 26th Telecommunications Forum, TELFOR 2018 - Proceedingsen
dc.titleOn the Role of ML Estimation and Bregman Divergences in Sparse Representation of Covariance and Precision Matricesen
dc.typeConference Paperen
dc.identifier.doi10.1109/TELFOR.2018.8611844en
dc.identifier.scopus2-s2.0-85062083975en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85062083975en
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptFakultet tehničkih nauka, Departman za energetiku, elektroniku i telekomunikacije-
crisitem.author.parentorgFakultet tehničkih nauka-
Appears in Collections:FTN Publikacije/Publications
Show simple item record

Page view(s)

26
Last Week
2
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.