Please use this identifier to cite or link to this item:
https://open.uns.ac.rs/handle/123456789/1533
Title: | Bluetooth low energy microlocation asset tracking (blemat) in a context-aware fog computing system | Authors: | Pešić, Saša Radovanović, Miloš Milošević Tošić, Mirjana Ivanović, Mirjana Iković O. Bošković, Dragan |
Issue Date: | 25-Jun-2018 | Journal: | ACM International Conference Proceeding Series | Abstract: | © 2018 Association for Computing Machinery. In this paper we present a Bluetooth Low Energy Microlocation Asset Tracking system (BLEMAT) that performs real-time position estimation and asset tracking based on BLE beacons and scanners. It is built on a context-aware fog computing system comprising Internet of Things controllers, sensors and a cloud platform, helped by machine-learning models and techniques. The BLEMAT system offers detecting signal propagation obstacles, performing signal perturbation correction and beacon paths exploration as well as auto discovery and onboarding of fog controller devices. These are the key characteristics of semi-supervised indoor position estimation services. In this paper we have shown there are solid basis that a fog computing system can efficiently carry out semi-supervised machine learning procedures for high-precision indoor position estimation and space modeling without the need for detailed input information (i.e. floor plan, signal propagation map, scanner position). In addition, the fog computing system inherently brings high level of system robustness, integrity, privacy and trust. | URI: | https://open.uns.ac.rs/handle/123456789/1533 | ISBN: | 9781450354899 | DOI: | 10.1145/3227609.3227652 |
Appears in Collections: | PMF Publikacije/Publications |
Show full item record
SCOPUSTM
Citations
3
checked on May 10, 2024
Page view(s)
31
Last Week
7
7
Last month
4
4
checked on May 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.