Mоlimо vаs kоristitе оvај idеntifikаtоr zа citirаnjе ili оvај link dо оvе stаvkе: https://open.uns.ac.rs/handle/123456789/15188
Nаziv: Ultrasound-assisted production of bioethanol by simultaneous saccharification and fermentation of corn meal
Аutоri: Nikolić, Svetlana
Mojović, Ljiljana
Rakin, Marica
Pejin, Dušanka
Pejin, Jelena 
Dаtum izdаvаnjа: 1-сеп-2010
Izdаvаč: Elsevier
Čаsоpis: Food Chemistry
Sažetak: An ultrasound-assisted liquefaction as a pretreatment for bioethanol production by simultaneous saccharification and fermentation (SSF) of corn meal using Saccharomyces cerevisiae var. ellipsoideus yeast in a batch system was studied. Ultrasound pretreatment (at a frequency of 40 kHz) was performed at different sonication times and temperatures, before addition of liquefying enzyme. An optimal duration of the treatment of 5 min and sonication temperature of 60 °C were selected, taking into account glucose concentration after the liquefaction step. Under the optimum conditions an increase of glucose concentration of 6.82% over untreated control sample was achieved. Furthermore, the SSF process kinetics was assessed and determined, and the effect of ultrasound pretreatment on an increase of ethanol productivity was investigated. The obtained results indicated that the ultrasound pretreatment could increase the ethanol concentration by 11.15% (compared to the control sample) as well as other significant process parameters. In this case, the maximum ethanol concentration of 9.67% w/w (which corresponded to percentage of the theoretical ethanol yield of 88.96%) was achieved after 32 h of the SSF process. A comparison of scanning electron micrographs of the ultrasound-pretreated and untreated samples of corn meal suspensions showed that the ultrasound stimulated degradation of starch granules and release of glucose, and thereby accelerated the starch hydrolysis due to the cavitation and acoustic streaming caused by the ultrasonic action. © 2010 Elsevier Ltd. All rights reserved.
URI: https://open.uns.ac.rs/handle/123456789/15188
ISSN: 03088146
DOI: 10.1016/j.foodchem.2010.02.063
Nаlаzi sе u kоlеkciјаmа:TF Publikacije/Publications

Prikаzаti cеlоkupаn zаpis stаvki

SCOPUSTM   
Nаvоđеnjа

110
prоvеrеnо 03.05.2024.

Prеglеd/i stаnicа

35
Prоtеklа nеdеljа
17
Prоtеkli mеsеc
0
prоvеrеnо 10.05.2024.

Google ScholarTM

Prоvеritе

Аlt mеtrikа


Stаvkе nа DSpace-u su zаštićеnе аutоrskim prаvimа, sа svim prаvimа zаdržаnim, оsim аkо nije drugačije naznačeno.