Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/11867
DC FieldValueLanguage
dc.contributor.authorVratnica M.en_US
dc.contributor.authorPluvinage G.en_US
dc.contributor.authorJodin P.en_US
dc.contributor.authorCvijović Z.en_US
dc.contributor.authorRakin M.en_US
dc.contributor.authorBurzić, Z.en_US
dc.contributor.authorGerić, K.en_US
dc.date.accessioned2020-03-03T14:46:13Z-
dc.date.available2020-03-03T14:46:13Z-
dc.date.issued2013-01-01-
dc.identifier.issn02613069en_US
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/11867-
dc.description.abstractIn this study, the notch fracture toughness (nft) of high-strength Al alloys was examined by a non-standardized procedure. the nft is defined as the critical notch stress-intensity factor (nsif) kρ,c, which is determined by using several methods of analysis and computing. a set of specimens with different notch root radii made from overaged 7xxx alloy forging was selected. the influence of the notch radius on the fracture toughness of the material was considered. it was found that the notch radius strongly affects the fracture behavior of forged 7xxx alloy in overaged condition. the notch fracture toughness was higher than the fracture toughness of a cracked specimen and increased linearly with notch radius. the critical notch radius was related to the spacing of intermetallic (im) particles which promote an intergranular or transgranular fracture mechanism according to their size. it appeared that ductile transgranular fracture generated by the formation of dimples around dispersoids and matrix precipitates was predominant which indicates that intense strains are limited to a much smaller zone than the coarse im particles spacing. this double mechanism is also operate for crack propagation of ductile fatigue. the nature and morphology of im particles exert significant effects on the rate of fatigue crack growth and fracture toughness properties. © 2012 Elsevier Ltd.en
dc.relation.ispartofMaterials and Designen
dc.titleNotch fracture toughness of high-strength Al alloysen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1016/j.matdes.2012.07.031-
dc.identifier.scopus2-s2.0-84865635933-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84865635933-
dc.description.versionUnknownen_US
dc.relation.lastpage310en
dc.relation.firstpage303en
dc.relation.volume44en
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Naučne i umetničke publikacije
Show simple item record

SCOPUSTM   
Citations

20
checked on Aug 12, 2023

Page view(s)

12
Last Week
10
Last month
0
checked on May 3, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.