Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/11061
Title: Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials
Authors: Ignjatović, Nenad
Ninkov, Petar
Kojić, Vesna
Bokurov, Miloš
Srdić, Vladimir 
Krnojelac, Dijana
Selaković, Srećko
Uskoković, Dragan
Keywords: cytotoxicity;fibroblast;hydroxyapatite composite;in vitro test;surface analysis
Issue Date: Dec-2006
Publisher: Wiley
Journal: Microscopy Research and Technique
Abstract: Reconstruction of bone defects is one of the major therapeutic goals in various clinical fields. Bone replacement materials must satisfy a number of criteria. Biological criteria are biocompatibility, controlled biodegradability, and osteoconductive or even osteogenic potential. The material should have a three-dimensional structure with an interconnected pore system so as to permit cell growth and transport of substances. The surface must permit cell adhesion and proliferation. Composite biomaterials have enormous potential for natural bone tissue reparation, filling and augmentation. Calcium hydroxyapatite/polymer composite biomaterials belong to this group of composites and, because of their osteoconductive and biocompatible properties, can be successfully implemented within bone tissue reparations. In this study, possible differences between BCP/DLPLG, pure BCP, and Bio-Oss® materials were examined in vitro. During overnight incubations, fibroblast and fibroblast-like cells (L929, MRC5) were able to adhere, spread, and remain viable on BCP, BCP/PLGA, and Bio-Oss® discs, as was evidenced by using light- and LVSEM-microscopy. Inhibiting influence over the cell growth is more pronounced in the cases of BCP usage on both cell lines-41.29% for L929 and 43.08% for MRC-5 cells. MRC-5 cells are, within the given experimental conditions, less sensitive on inhibiting effects for the materials BCP/PLGA and Bio-Oss® (10.13% and 10.76%, respectively) than for the L929 cell lines (23.02% and 15.44%, respectively). © 2006 Wiley-Liss, Inc.
URI: https://open.uns.ac.rs/handle/123456789/11061
ISSN: 1059910X
DOI: 10.1002/jemt.20374
Appears in Collections:TF Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

37
checked on May 10, 2024

Page view(s)

40
Last Week
15
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.