Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/7558
DC FieldValueLanguage
dc.contributor.authorHerceg, Đorđeen
dc.contributor.authorHerceg, Dragoslaven
dc.date.accessioned2019-09-30T09:02:52Z-
dc.date.available2019-09-30T09:02:52Z-
dc.date.issued2014-01-01en
dc.identifier.issn03770427en
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/7558-
dc.description.abstractIn this article we present sixth order methods developed by extending third order methods of Herceg and Herceg (2013) for solving nonlinear equations. The methods require only four function evaluations per iteration. In this regard the efficiency index of our methods is 61/4≈1.56508. Considered methods are based on Stolarsky and Gini means and depend on two parameters. Sixth order convergence of considered methods is proved, and corresponding asymptotic error constants are expressed in terms of two parameters. Numerical examples, obtained using Mathematica with high precision arithmetic, are included to demonstrate convergence and efficacy of our methods. For some combinations of parameter values, the new sixth order methods produce very good results on tested examples, compared to the results produced by some of the sixth order methods existing in the related literature. © 2014 Elsevier B.V. All rights reserved.en
dc.relation.ispartofJournal of Computational and Applied Mathematicsen
dc.titleSixth-order modifications of Newton's method based on Stolarsky and Gini meansen
dc.typeJournal/Magazine Articleen
dc.identifier.doi10.1016/j.cam.2014.02.026en
dc.identifier.scopus2-s2.0-84896523828en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84896523828en
dc.relation.lastpage253en
dc.relation.firstpage244en
dc.relation.volume267en
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptPrirodno-matematički fakultet, Departman za matematiku i informatiku-
crisitem.author.parentorgPrirodno-matematički fakultet-
Appears in Collections:PMF Publikacije/Publications
Show simple item record

SCOPUSTM   
Citations

9
checked on May 3, 2024

Page view(s)

12
Last Week
3
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.