Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/4346
DC FieldValueLanguage
dc.contributor.authorPanić, Markoen_US
dc.contributor.authorAelterman, Janen_US
dc.contributor.authorCrnojević, Vladimiren_US
dc.contributor.authorPižurica, Aleksandraen_US
dc.date.accessioned2019-09-23T10:33:35Z-
dc.date.available2019-09-23T10:33:35Z-
dc.date.issued2016-08-
dc.identifier.issn2076-1465en_US
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/4346-
dc.description.abstract© 2016 IEEE. Recent work in compressed sensing of magnetic resonance images (CS-MRI) concentrates on encoding structured sparsity in acquisition or in the reconstruction stages. Subband coefficients of typical images obey a certain structure, which can be viewed in terms of fixed groups (like wavelet trees) or statistically (certain configurations are more likely than others). Approaches using wavelet tree-sparsity have already demonstrated excellent performance in MRI. However, the use of statistical models for spatial clustering of the subband coefficients has not been studied well in CS-MRI yet, although the potentials of such an approach have been indicated. In this paper, we design a practical reconstruction algorithm as a variant of the proximal splitting methods, making use of a Markov Random Field prior model for spatial clustering of subband coefficients. The results for different undersampling patterns demonstrate an improved reconstruction performance compared to both standard CS-MRI methods and methods based on wavelet tree sparsity.en
dc.relation.ispartofEuropean Signal Processing Conferenceen
dc.titleCompressed sensing in MRI with a Markov random field prior for spatial clustering of subband coefficientsen_US
dc.typeConference Paperen_US
dc.identifier.doi10.1109/EUSIPCO.2016.7760311-
dc.identifier.scopus2-s2.0-85006049730-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85006049730-
dc.description.versionPublisheden_US
dc.relation.lastpage566en
dc.relation.firstpage562en
dc.relation.volume2016-Novemberen
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptInstitut BioSense-
crisitem.author.deptInstitut BioSense-
crisitem.author.orcid0000-0002-7993-6826-
crisitem.author.orcid0000-0001-7144-378X-
crisitem.author.parentorgUniverzitet u Novom Sadu-
crisitem.author.parentorgUniverzitet u Novom Sadu-
Appears in Collections:IBS Publikacije/Publications
TF Publikacije/Publications
Show simple item record

SCOPUSTM   
Citations

6
checked on May 10, 2024

Page view(s)

32
Last Week
21
Last month
0
checked on May 3, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.