Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/3351
Title: Optimization of the classification process in the zigzag air classifier for obtaining a high protein sunflower meal – Chemometric and CFD approach
Authors: Banjac, Vojislav 
Pezo, Lato
Pezo, Milada
Vukmirović, Đuro
Čolović, Dušica 
Fišteš, Aleksandar 
Čolović, Radmilo 
Issue Date: 1-Mar-2017
Journal: Advanced Powder Technology
Abstract: © 2017 The Society of Powder Technology Japan In this study, sunflower meal is ground by a hammer mill after which air zigzag gravitational air classifier is used for separating sunflower hulls from the kernels in order to obtain protein rich fractions. Three hammer mill sieves with sieve openings diameter of 3, 2 and 1 mm were used, while three air flows (5, 8.7 and 12.5 m3/h) and three feed rates (30%, 60% an 90% of bowl feeder oscillation maximum rate) were varied during air classification process. For describing the effects of the test variables on the observed responses Principal Component Analysis, Standard Score analysis and Response Surface Methodology were used. Beside experimental investigations, CFD model was used for numerical optimization of sunflower meal air classification process. Air classification of hammer milled sunflower meal resulted in coarse fractions enriched in protein content. The decrease in sieve openings diameter of the hammer mill sieve increased protein content in coarse fractions of sunflower meal obtained at same air flow, and at the same time decreased matching fraction yield. Increase in air flow lead to the increase in protein content along the same hammer mill sieve. Standard score analysis showed that optimum values for protein content and ratio of coarse and fine fractions have been obtained by using a sieve with 1 mm opening diameter, air flow of 12.5 m3/h and 60% of the maximum feeder rate. Fraction ratio and protein content were mostly affected by the linear term of air flow and the sieve openings diameter of the hammer mill sieve in the Second Order Polynomial model. The main focus of CFD analysis was on the particle simulation and the evaluation of the separation efficiency of the zigzag classifier.
URI: https://open.uns.ac.rs/handle/123456789/3351
ISSN: 09218831
DOI: 10.1016/j.apt.2017.01.013
Appears in Collections:TF Publikacije/Publications

Show full item record

SCOPUSTM   
Citations

25
checked on May 3, 2024

Page view(s)

28
Last Week
9
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.