Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/32636
DC FieldValueLanguage
dc.contributor.authorChiara Cerianien_US
dc.contributor.authorMattia Scagliottien_US
dc.contributor.authorTommaso Losien_US
dc.contributor.authorAlessandro Luzioen_US
dc.contributor.authorSara Mattielloen_US
dc.contributor.authorMauro Sassien_US
dc.contributor.authorNicolò Piantaen_US
dc.contributor.authorMatteo Rapisardaen_US
dc.contributor.authorLuigi Mariuccien_US
dc.contributor.authorMario Caironien_US
dc.contributor.authorLuca Beverinaen_US
dc.date.accessioned2023-11-22T11:15:21Z-
dc.date.available2023-11-22T11:15:21Z-
dc.date.issued2023-03-21-
dc.identifier.issn2199-160Xen_US
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/32636-
dc.description.abstractConjugated semiconducting polymers are key active materials for printable electronics, sensors and biosensors, organic photovoltaics, organic light emitting devices, and more. The research in the field developed very efficient materials and sound structure property relationships, thus making a case for a transition from laboratory to industrial environment. At this critical juncture, sustainability, and ease of scaling up are at least as important as performances, to the point that efficient materials on a lab scale could become unpractical for the industry. The development of more efficient synthetic protocols and the complete removal of all organic solvents from both the synthesis and the processing of semiconducting polymers can help tremendously to improve sustainability and reduce costs. It is shown that the use of an aqueous dispersion of the food grade surfactant lecithin as the medium, enables the synthesis and processing of the representative semiconducting alternating copolymer poly (9,9-dioctylfluorene-alt-bithiophene) (PF8T2) in high yield and high quality and with transistor performances comparable with those obtained with reference materials synthetized and processed from volatile organic solvents.en_US
dc.description.sponsorshipEuropean Commissionen_US
dc.language.isoenen_US
dc.publisherWiley-VCHen_US
dc.relationTwinning for reaching sustainable scientific and technological excellence in the field of Green Electronics (GREENELIT)en_US
dc.relation.ispartofAdvanced Electronic Materialsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectconjugated polymersen_US
dc.subjectdispersion polymerizationen_US
dc.subjectmicellar catalysisen_US
dc.subjectorganic field effect transistorsen_US
dc.subjectprocessing from wateren_US
dc.titleOrganic Solvent Free Synthesis and Processing of Semiconducting Polymers for Field Effect Transistors in Waterborne Dispersionsen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1002/aelm.202201160-
dc.description.versionPublisheden_US
dc.relation.firstpage2201160en_US
dc.relation.issue5en_US
dc.relation.volume9en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.project.grantno951747-
Appears in Collections:Projekti
Show simple item record

Page view(s)

11
Last Week
6
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons