Please use this identifier to cite or link to this item:
https://open.uns.ac.rs/handle/123456789/32355
Title: | Complex order fractional derivatives in viscoelasticity | Authors: | Atanacković Teodor Konjik Sanja Pilipović Stevan Zorica Dušan |
Issue Date: | 2016 | Journal: | Mechanics of Time-Dependent Materials | Abstract: | © 2016, Springer Science+Business Media Dordrecht. We introduce complex order fractional derivatives in models that describe viscoelastic materials. This cannot be carried out unrestrictedly, and therefore we derive, for the first time, real valued compatibility constraints, as well as physical constraints that lead to acceptable models. As a result, we introduce a new form of complex order fractional derivative. Also, we consider a fractional differential equation with complex derivatives, and study its solvability. Results obtained for stress relaxation and creep are illustrated by several numerical examples. | URI: | https://open.uns.ac.rs/handle/123456789/32355 | ISSN: | 1385-2000 | DOI: | 10.1007/s11043-016-9290-3 |
Appears in Collections: | PMF Publikacije/Publications |
Show full item record
SCOPUSTM
Citations
37
checked on Nov 20, 2023
Page view(s)
45
Last Week
13
13
Last month
0
0
checked on May 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.