Please use this identifier to cite or link to this item: https://open.uns.ac.rs/handle/123456789/31293
DC FieldValueLanguage
dc.contributor.authorBašić Bojan-
dc.date.accessioned2020-12-14T19:47:04Z-
dc.date.available2020-12-14T19:47:04Z-
dc.date.issued2015-
dc.identifier.issn0001-9054-
dc.identifier.urihttps://open.uns.ac.rs/handle/123456789/31293-
dc.description.abstract© 2014, Springer Basel. We consider the functional equation f q (n) = f(n + 1) + k, where $${q \geqslant 2}$$q⩾2 and $${k \in \mathbb{Z}}$$k∈Z are given, and $${f :\mathbb{N} \to \mathbb{N}}$$f:N→N. This functional equation is related to roots of translations of positive integers, and another motivation for studying this functional equation is the fact that it can be thought of as the “prototypical case” of a more general functional equation of a very broad scope. Our main result is that the considered functional equation has a solution if and only if either k = 0 or $${k \geqslant -1}$$k⩾-1 and $${q - 1\mid k + 1}$$q-1∣k+1. We further find all solutions for the case q = 3 and k = 1, which is an example that illustrates that the considered functional equation can have a very unexpected set of solutions even with quite small parameters.-
dc.language.isoen-
dc.relation.ispartofAequationes Mathematicae-
dc.sourceCRIS UNS-
dc.source.urihttp://cris.uns.ac.rs-
dc.titleOn a functional equation related to roots of translations of positive integers-
dc.typeJournal/Magazine Article-
dc.identifier.doi10.1007/s00010-014-0302-6-
dc.identifier.scopus2-s2.0-84931955521-
dc.identifier.urlhttps://www.cris.uns.ac.rs/record.jsf?recordId=96827&source=BEOPEN&language=en-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84931955521-
dc.relation.lastpage1205-
dc.relation.firstpage1195-
dc.relation.issue4-
dc.relation.volume89-
dc.identifier.externalcrisreference(BISIS)96827-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptPrirodno-matematički fakultet, Departman za matematiku i informatiku-
crisitem.author.orcid0000-0002-1607-7139-
crisitem.author.parentorgPrirodno-matematički fakultet-
Appears in Collections:PMF Publikacije/Publications
Show simple item record

SCOPUSTM   
Citations

1
checked on May 10, 2024

Page view(s)

24
Last Week
7
Last month
0
checked on May 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.