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Abstract Parameter estimation of the 2R-1C model is usually done with it-
erative methods which increases required complexity of measuring and data
processing units. Because of that there is a strong motivation to develop meth-
ods for faster and power efficient parameter estimation with low-complexity
algorithms suitable for microcontroller-based devices. Such approach is more
applicable for practical use when low-cost and nearly real-time estimation
are needed. In this paper we present the non-iterative approach based on
quadratic interpolation for characteristic frequency estimation from imaginary
part of measured impedance, while the 2R-1C model parameters are calculated
based on the set of analytical expressions. Analysis with impedance data of
the 2R-1C model, obtained by simulation and measurement, showed that the
approach with quadratic interpolation can reduce required number of measure-
ment points for 80% in comparison with previously reported the non-iterative
approach without quadratic interpolation, but to keep estimation error lower
than 1%, too. Approaches with and without quadratic interpolation were im-
plemented on the microcontroller-based device for comparison regarding the
estimation accuracy, RAM and flash memory usage as well as the execution
time. Experiments showed that addition of quadratic interpolation introduces
slightly higher execution time (about 6.7%), requires 24% more flash memory
and just 2.4% more RAM. However, root mean square errors for calculated
impedance with model parameters estimated using quadratic interpolation are
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smaller for 42.8% (real part) and 51.5% (imaginary part) in comparison with
estimation without quadratic interpolation.

Keywords 2R-1C model · parameter estimation · quadratic interpolation

1 Introduction

Non-destructive techniques (electrical impedance spectroscopy, dielectric spec-
troscopy, thermal imaging, eddy current testing, magnetic particle or radio-
graphic and ultrasonic methods, etc.) for evaluation of properties of materials,
processes and structures have been a topic of high importance and interest
in scientific community. For example, electrical impedance spectroscopy is a
powerful and widely used technique in many fields as a method for unrav-
eling complex non-linear processes for many material-material interfaces and
applications. Measured electrical impedance as a function of the excitation fre-
quency can reveal internal dynamics or underlying processes [22]. It is possible
to present different material-material interfaces, structural characteristics and
internal connections with corresponding basic electrical elements such as resis-
tors (R), inductors (L) or capacitors (C ) to form equivalent electrical circuit
(model). In literature, electrical circuits are widely reported as approach in
modeling of sensors [42, 43], biological cells and bioimpedance [30, 35], solar
cells [20], proton exchange membrane (PEM) fuel cells [44], batteries [12, 27]
as well as in unsteady heat transfer analysis [45] and prediction of total body
water volume [16].

Structure of the equivalent electrical circuit is usually chosen based on
the previous knowledge of internal structure and involved physical processes.
Parameter estimation is focused on finding values of model parameters which
ensure low difference between measured impedance and impedance calculated
with extracted values of model parameters. Increasing power of available com-
puting units, allows use of very complex models containing empirical elements
such as constant phase element (CPE) and the Warburg diffusion element.
Recently, concepts from fractional calculus (non-integer differentiation and in-
tegration) have been involved in parameter estimation of equivalent electrical
circuits [2, 15, 26]. However, many electrochemical processes have inherently
capacitive electrical behavior which in modeling permits use of simple R-C
models rather than complex models [12, 16, 20, 23–25, 27, 30, 35, 42–45]. The
2R-1C model, which consists of two resistors (R1 and R2) and one capacitor
(C2), with connections shown in Fig. 1, is widely used because of simplicity
and ability to have direct physical interpretation of model parameters [34].
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Fig. 1 The 2R-1C model.

For example, in bioimpedance analysis, the 2R-1C model presents bio-
logical cell where R1 represents the resistance of the extracellular space, R2

represents the resistance of the intracellular space and C2 represents the ca-
pacitance of the cell membrane. In bioimpedance analysis, the Cole model
of biological cell is used as well, with studies showing better accuracy in fit-
ting the experimental high-freqeuncy impedance data compared to the 2R-1C
model [48]. However, in contrast to the 2R-1C model, instead of the capacitor
C2 the Cole model contains an CPE element which does not have clear phys-
ical meaning [48]. Because of that, the 2R-1C model allows identification of
changes of model parameters which represents changes in corresponding phys-
ical phenomena. For example, changes in cell membrane capacitance (C2 in
the model) reflects the characteristic features of the occurrence of many pro-
cesses in the cell [4], e.g. fusion of vesicles with the plasma membrane or cell
coupling via gap junctions [36], monitoring of particle uptake after cellular ex-
posure to phagocytic stimuli [18], or cell temperature changes [19]. The 2R-1C
model is used in commercial bioimpedance spectroscopy devices as well, such
as ImpediMed SFB7 or Xitron Hydra 4200, which provide estimated values
for the resistance of the extracellular space, the resistance of the intracellular
space and the capacitance of the cell membranes from measured bioimpedance.
Use of the 2R-1C model in bioimpedance analysis was reported in measuring
changes in volume within an organ or whole body [14], in-vivo time-varying
human lung tissue characterization [34], and body water volume estimation
[16].

It should be emphasized that analysis of the 2R-1C circuit (Fig. 1) can be
used and for alternate structure of the 2R-1C model shown in Fig. 2.

R′
1

C′
2

R′
2

Fig. 2 The 2R-1C model formed with a resistor in series with a parallel RC circuit.
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However, models from Fig. 1 and Fig. 2 have the same impedance spectra
if following conditions are satisfied:

R′1 =
R1R2

R1 +R2
(1)

R′2 =
R2

1

R1 +R2
(2)

C ′2 =
C2(R1 +R2)2

R2
1

. (3)

In the rest of this paper we will use term 2R-1C model for the structure
shown in Fig. 1, with note that complete analysis can be easily transferred
to the model from Fig. 2. Moreover, as the meaning of the 2R-1C model
parameters depends on the application of the model, in this paper we will
consider a general case without discussion regarding physical interpretation of
model parameters. Our future work is directed towards practical application
of proposed method, i.e. parameter estimation from measured bioimpedance.

The complex impedance of the 2R-1C model at some angular frequency ω
is given with:

Z(ω) = R(ω) + jX(ω) =
R1(1 + jωC2R2)

1 + jωC2(R1 +R2)
(4)

where R(ω) and X(ω) stand for real (resistance) and imaginary part (reac-
tance) of Z(ω), respectively.

As the 2R-1C model consists of three parameters (R1,R2 and C2) while just
two measured values (R(ω) and X(ω)) are available at some ω, it is not pos-
sible to have unique analytical solution of such system of equations. Iterative
methods as the Taylor’s polynomial [29], the Adomian decomposition method
[1, 3, 10], homotopy perturbation method [17], quadrature formulas [9, 28],
the Levenberg–Marquardt and the trust region algorithms in nonlinear least
squares approach [6–8] are widely used in such class of mathematical problems.
However, iterative methods have some limitations regarding time consumption,
slow signal processing, possibility of converging towards a local minimum as
well as request for high quality starting point for the values of model param-
eters [34]. Because of that, other approaches for parameter estimation of the
2R-1C model are continuously developed, such as differential impedance anal-
ysis [34], local polynomial method [32], use of multisine excitations instead
of classical technique of frequency sweep in impedance measurement [33], and
more recently fast spectral measurements and regularization [31]. However, ap-
proaches described in [31–34] are not optimized for low-cost systems with a low
power processing unit because they require complex mathematical operations,
thus they are typically implemented on PC-based platforms. The main contri-
bution of this paper is formulation of the non-iterative method for parameter
estimation of the 2R-1C models which is appropriate for low-cost and widely
used microcontroller-based devices. Such approach ensures high system porta-
bility and reliability which is very important for practical uses where handheld
devices are needed for real time estimation at the measurement site.
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This paper is organized as follows: Section 2 describes non-iterative method
for parameter estimation of the 2R-1C model as well as comprehensive analysis
of such approach regarding estimation accuracy. Identification of parameters
which can affect estimation accuracy was started with determination of influ-
ence of uncertainty in characteristic frequency on estimated values of model
parameters. In addition to that, influence of number of measurement frequen-
cies on estimation of characteristic frequency is given. Finally, the approach
based on quadratic interpolation for more accurate estimation of character-
istic frequency is presented. In Section 3, the main experimental results and
validation of proposed method with simulated and experimentally obtained
impedance data are given. The microcontroller-based implementation was an-
alyzed regarding estimation accuracy, RAM and flash memory usage as well as
execution time. Finally, the key achievements are summarized and directions
of future work are described in Section 4.

2 Methods

2.1 Non-Iterative Method for Parameter Estimation of the 2R-1C Model

Real part of complex impedance of the 2R-1C model can be written as:

R(ω) = Re{Z(ω)} = K
ω2 + zp

ω2 + p2
(5)

and imaginary part as:

X(ω) = Im{Z(ω)} = K
(p− z)ω
ω2 + p2

(6)

where K, z and p are defined as:

K =
R1R2

R1 +R2
(7)

z =
1

R2C2
(8)

p =
1

(R1 +R2)C2
. (9)

In our previous study the non-iterative approach for parameter estimation
of 2R-1C model (R̂1, R̂2 and Ĉ2) was proposed [41]. Characteristic angular
frequency ωc of the 2R-1C model is equal to reciprocal value of time constant
τ = (R1 + R2)C2, while first derivative of X(ω) with respect to ω is equal to
zero for

ω =
1

(R1 +R2)C2
(10)

which is, according to (9), equal to p. Therefore, characteristic angular fre-
quency can be derived from the maximum magnitude of the measured imag-
inary part of impedance of the 2R-1C model. Our approach uses the value of
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estimated characteristic angular frequency as p̂, whereupon parameters K̂(ωi)
and ẑ(ωi) are calculated for each measurement angular frequency ωi, i=1,...,N,
where N is the number of data points included in the measurements, as:

ẑ(ωi) =
R(ωi) · p̂ · ωi −X(ωi) · ω2

i

R(ωi) · ωi +X(ωi) · p̂
(11)

K̂(ωi) =
R(ωi) · ωi +X(ωi) · p̂

ωi
. (12)

With known p̂, K̂(ωi) and ẑ(ωi), from system of equations (7)-(9), param-
eters of the 2R-1C model are calculated as:

R̂1(ωi) =
ẑ(ωi) · K̂(ωi)

p̂
(13)

R̂2(ωi) =
ẑ(ωi) · K̂(ωi)

ẑ(ωi)− p̂
(14)

Ĉ2(ωi) =
ẑ(ωi)− p̂

ẑ2(ωi) · K̂(ωi)
(15)

for each ωi, i=1,...,N. Finally, estimated values R̂1, R̂2 and Ĉ2 are obtained
as means of R̂1(ωi), R̂2(ωi) and Ĉ2(ωi), i=1,...,N, respectively.

Compared to iterative approaches, advantages of described method are
lower computation complexity, shorter processing time, suitability for portable
and autonomous low-cost microcontroller-based systems, and in-situ param-
eter estimation in real time, as well as acceptable estimation accuracy [41].
Comprehensive analysis regarding estimation accuracy and execution time
showed that proposed non-iterative method in comparison with complex non-
linear least squares (Levenberg–Marquardt algorithm) was 20-80 times faster,
but still providing acceptable estimation error lower than 1% [41]. However,
in [41] we identified strong dependence of estimation accuracy to the number
of measurement points, as high number is required for accurate estimation
of characteristic frequency. In the rest of this paper we will present approach
to reduce need for high number of measurement points but to keep the same
estimation accuracy without significant increase in algorithm complexity as
well.

2.2 Influence of Uncertainty in Characteristic Frequency on Estimated Values
of Model Parameters

If instead of exact value of characteristic angular frequency for the given 2R-
1C model, value p̂ = µ · p is estimated from measured data (µ is real number)
relative errors for estimated values K̂(ωi) and ẑ(ωi) can be calculated:

δz(ωi) =
ẑ(µ · p, ωi)− z

z
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=
(1− µ) · p · ωi · (X2(ωi) +R2(ωi))

(ωi ·R(ωi) + µ · p ·X(ωi)) · (ωi ·X(ωi)− p ·R(ωi))
(16)

and

δK(ωi) =
K̂(µ · p, ωi)−K

K
=

p · (µ− 1) ·X(ωi)

p ·X(ωi) + ωi ·R(ωi)
. (17)

Calculations of relative errors for estimated R̂1, R̂2 and Ĉ2 can be done in
similar way, but because estimated values of model parameters are means of
(13)-(15), thus they are frequency independent, it is more useful to calculate
relative errors as:

δR̂1 =
1
N

∑N
i=1 R̂1(ωi)−R1

R1
=
R̂1 −R1

R1
(18)

δR̂2 =
1
N

∑N
i=1 R̂2(ωi)−R2

R2
=
R̂2 −R2

R2
(19)

δĈ2 =
1
N

∑N
i=1 Ĉ2(ωi)− C2

C2
=
Ĉ2 − C2

C2
(20)

where R1, R2 and C2 are actual values of model parameters, while R̂1(ωi),
R̂2(ωi) and Ĉ2(ωi) are defined with (13), (14) and (15), respectively.

2.3 Influence of Number of Measurement Frequencies on Estimation of
Characteristic Frequency

Number of measurement frequencies N is usually limited by complexity of
used measurement and data acquisition units, and their capabilities to han-
dle a wide frequency range, small frequency step and large amount of data.
However, in many applications large number of measurement frequencies is
required to allow identification and analysis of involved processes. Thus, opti-
mization of number of measurement points is very common and non-easy task
to accomplish.

It is more convenient to use f [Hz] instead of ω [rad/s] for specifications
regarding frequency range and characteristic frequency of impedance. Because
of that, we will define frequency range as (fmin, fmax). Number of measurement
frequencies in analyzed frequency range defines the frequency step ∆f as:

∆f =
fmax − fmin

N
. (21)

In Fig. 3 locations of the few measurement points on the frequency axis
with typical curve X(f) of 2R-1C model are given. If characteristic frequency
fc is located between two measurement points (fi, fi+1) the biggest possible

absolute error in characteristic frequency estimation is f̂c − fc = 0.5∆f .
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Fig. 3 Error in characteristic frequency estimation due to limited number of the measure-
ment frequencies.

If maximum acceptable relative error in characteristic frequency estimation
is pre-defined with given requirement δfc, and because the biggest absolute
error in characteristic frequency estimation is f̂c−fc = 0.5∆f , it is possible to
define required frequency step or number of measurement frequencies in the
analyzed frequency range as threshold to satisfy that requirement. The highest
number of measurement frequencies is required if characteristic frequency is
equal to the lower frequency limit (fc = fmin):

N =
fmax − fmin

2 · fc · δfc
(22)

which requires the smallest frequency step

∆f = 2 · δfc · fc. (23)

We defined threshold N or ∆f to ensure that relative error is smaller than
defined δfc. However, it is possible for some lower values of N to have smaller
error if (fmin+h∆f) ≈ fc where h is integer. For example, if analyzed frequency
range is from 10 kHz to 100 kHz and if characteristic frequency is fc=50 kHz,
then N =10, which corresponding to frequency step of ∆f=10 kHz, will make
smaller error in characteristic frequency estimation than N =15 which cor-
responding to frequency step of ∆f=6 kHz. However, such approach is not
reliable and it is usually very hard to predict optimal value for N to minimize
estimation error.

2.4 Solving a Set of Nonlinear Equations Using Quadratic Interpolation for
More Accurate Estimation of Characteristic Frequency

Estimation accuracy of characteristic frequency based on finding the maximum
magnitude (peak of the curve) of the measured imaginary part can be affected
by the limited number of measurement frequencies or by noise. In this paper
we will not analyze noise influence because we will consider case that signal
was filtered prior to the parameter estimation. A comprehensive analysis of
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noise influence and design of appropriate filter will be the subject of our future
work.

Limited number of measurement frequencies leads to possibility that point
equal to characteristic frequency can be missed in frequency sweep, as it is
shown in Fig. 3. In order to increase accuracy of characteristic frequency esti-
mation it is required to have more accurate estimated peak of imaginary part
of impedance. Our approach is to use three-point quadratic interpolation of
impedance measurement values of imaginary part around estimated peak β as
shown in Fig. 4:

X(ωn-1) = α (24)

X(ωn) = β (25)

X(ωn+1) = γ. (26)

Fig. 4 Values of imaginary part of impedance around peak β.

Solving the set of three nonlinear equations (24)-(26) using quadratic in-
terpolation

aω2 + bω + c = X(ω) (27)

gives following solution:

a = − (α− β) · ωn+1 − (α− γ) · ωn + (β − γ) · ωn-1

(ωn-1 − ωn) · (ωn-1 − ωn+1) · (ωn − ωn+1)
(28)

b = −
α · (ω2

n − ω2
n+1)− β · (ω2

n-1 − ω2
n+1)

(ωn-1 − ωn) · (ωn-1 − ωn+1) · (wn − ωn+1)

− γ · (ω2
n-1 − ω2

n)

(ωn-1 − ωn) · (ωn-1 − ωn+1) · (wn − ωn+1)
(29)

c =
(α− γ) · ωn-1 · ωn

(ωn-1 − ωn) · (ωn-1 − ωn+1)
− α · ωn − β · ωn-1

ωn-1 − ωn

− (β − γ) · ωn-1 · ωn

(ωn-1 − ωn) · (ωn − ωn+1)
. (30)
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With calculated values a, b and c it is possible to estimate corrected peak
of imaginary part of impedance, and therefore corrected characteristic angular
frequency of the 2R-1C model:

p̂corr = − b

2a
. (31)

Our approach is to use p̂corr, (11) and (12) for the 2R-1C model parameters
estimation with (13), (14) and (15).

3 EXPERIMENTAL RESULTS

3.1 Simulation

3.1.1 Data Generation

As a part of validation process of the non-iterative method described in Sec-
tion 2, we analyzed parameter estimation of the 2R-1C models with numeri-
cally calculated (simulated) impedance data. Reference values were chosen as
R1=1 kW, R2=470 W and C2 = 4.7 nF as standard and widely available as real
components for latter hardware-based experiment. Characteristic angular fre-
quency ωc of analyzed 2R-1C model is calculated using (9) for given reference
values as ωc=144738.750 rad/s while corresponding characteristic frequency is
fc=23035.887 Hz. Complex impedance data was calculated using (1) in fre-
quency range from 5 kHz to 100 kHz, which is common for low-cost and widely
used microcontroller-based impedance meters [38].

3.1.2 Influence of Uncertainty in Characteristic Frequency on Estimated
Values of Model Parameters

Instead of use of the actual values of characteristic frequency, we varied val-
ues of µ from ±0.01, ±0.02, ±0.05 to ±0.1. Thus, we introduced relative er-
rors (δfc(%)) in characteristic frequencies estimation of ±1%, ±2%, ±5% and
±10%, respectively. We wanted additionally to analyze if sign in relative er-
ror in characteristic frequency estimation makes some difference on estimated
values of model parameters. Number of measurement frequencies (10, 100 and
1000) was chosen arbitrarily to adequately cover analyzed frequency range.
Estimated values of model parameters using approach without quadratic in-
terpolation are presented in Table 1.
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Table 1 Relative Errors for Estimated Values of Model Parameters for Differ-
ent δfc[%].

N δfc[%] δR1[%] δR2[%] δC2[%]
10 10 -4.338 -6.853 -4.130
100 10 -4.475 -6.202 -4.253
1000 10 -4.488 -6.141 -4.265
10 5 -2.272 -3.486 -2.151
100 5 -2.344 -3.134 -2.217
1000 5 -2.351 -3.101 -2.223
10 2 -0.936 -1.409 -0.881
100 2 -0.965 -1.262 -0.910
1000 2 -0.968 -1.248 -0.913
10 1 -0.473 -0.707 -0.445
100 1 -0.487 -0.632 -0.459
1000 1 -0.489 -0.625 -0.460
10 -1 0.482 0.712 0.452
100 -1 0.498 0.635 0.467
1000 -1 0.499 0.627 0.468
10 -2 0.974 1.429 0.913
100 -2 1.005 1.272 0.942
1000 -2 1.008 1.258 0.945
10 -5 2.512 3.612 2.342
100 -5 2.591 3.199 2.418
1000 -5 2.598 3.161 2.425
10 -10 5.303 7.359 4.898
100 -10 5.469 6.462 5.060
1000 -10 5.485 6.379 5.075

As it can be seen from Table 1, relative errors in estimation of parame-
ters were lower than ±1% if δfc is ±1%. Moreover, if µ < 1 relative errors
were positive, and if µ > 1 relative errors were negative. Number of measure-
ment frequencies did not make significant difference on estimated values, thus
number of measurement frequencies is only important for estimation of char-
acteristic frequency. Relative errors lower or up to 1% in estimation of values
of model parameters are usually acceptable in many practical cases, and we
will consider that case in the rest of the paper. Thus, our target was estimation
of characteristic frequency with error lower than 1%.

3.1.3 Influence of Number of Measurement Frequencies on Estimation of
Characteristic Frequency

If analyzed frequency range is from 5 kHz to 100 kHz and defined δfc = 0.01
(1% error), the highest number of measurement frequencies is required if
fc=5 kHz. According to (22) required frequency step is 100 Hz or N =950.
Using approach without quadratic interpolation estimated value of character-
istic frequency of analyzed the 2R-1C model when N =950 is f̂c=23018.967 Hz.
Thus, characteristic frequency is estimated with relative error -0.073%. Es-
timated value for characteristic angular frequency was used with described
non-iterative method for parameter estimation of analyzed 2R-1C model with-
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out quadratic interpolation. As it was expected, values of model parameters
R̂1=1000.363 W, R̂2= 470.216 W, Ĉ2=4.702 nF were estimated with very small
relative errors: δR1= 0.036%, δR2= 0.046% and δC2= 0.034%.

However, relative high number of measurement points of 950 is not suit-
able for low-cost impedance meters because of requirement of advanced data
acquisition unit as well as high processing time. Moreover, in many practical
applications [5], characteristic frequency is usually a few tens of kHz, which can
significantly reduce required number of measurement frequencies. For example,
studies of bioimpedance showed that mean values of characteristic frequencies
are 80.1 kHz and 57 kHz for women and men, respectively [11, 21, 37, 47].
Median values of characteristic frequencies are 32 kHz for males and 35 kHz
for females [46]. Thus, previous knowledge of analyzed system is very useful
in reduction of required number of measurement points. Moreover, approxi-
mate location of characteristic frequency can be found with initial impedance
measurement (screening) with just few measurement points. For example, if
minimum possible fc is 20 kHz, then according to (22) N =238 should ensure
less than 1% error in characteristic frequency estimation.

Estimated value of characteristic frequency of analyzed 2R-1C model when
N =238 is f̂c=23035.889 Hz. Thus, characteristic frequency is estimated with
error 0.009%. Estimated value for characteristic angular frequency were used
with described non-iterative method for parameter estimation of analyzed 2R-
1C model without quadratic interpolation. As it was expected, values of model
parameters R̂1=999.955 W, R̂2=469.973 W, Ĉ2=4.700 nF were estimated with
very small relative errors: δR1= -0.004%, δR2= 0.040% and δC2= 0.004%.

3.1.4 More Accurate Characteristic Frequency Estimation of 2R-1C Model
Using Quadratic Interpolation

Our approach, described in Section 2.4, is to reduce number of measurement
points but to keep the relative high accuracy in estimation of values of model
parameters using quadratic interpolation of measurement values around peak
of imaginary part of impedance. We started with N=238, and then N was
decreasing to 3 as minimum number of measurement points to implement
quadratic interpolation. Parameter p̂ was estimated using (28)-(30) and (31),
while δfc was monitored. Our tests showed that, in case of the analyzed 2R-
1C model, it was possible to reduce N to 29 as threshold to have relative
error in characteristic frequency estimation lower than 1%, as it is shown in
Fig. 5. As it was expected, without quadratic interpolation it was required
much higher number of measurement frequencies (N =173). Additionally, for
N =29 relative error in characteristic frequency estimation without quadratic
interpolation was 4.652%.
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Fig. 5 Comparison of relative errors in characteristic frequency estimation.

Methods with and without quadratic interpolation were compared regard-
ing relative errors in estimated values of model parameters as well. Relative
errors in parameter estimation of model values (R1, R2 and C2) with and with-
out quadratic interpolation for different numbers of measurement frequencies
are shown in Fig. 6-8, respectively.

Fig. 6 Comparison of relative errors in estimation of R1.
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Fig. 7 Comparison of relative errors in estimation of R2.

Fig. 8 Comparison of relative errors in estimation of C2.

As it can be seen from Fig. 6-8, with quadratic interpolation it was possible
to have 1% relative error in parameter estimation with 80% reduced number of
measurement points (N =23) in comparison with approach without quadratic
interpolation (N =115).
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3.1.5 Parameter Estimation of the 2R-1C Model from Electrical
Bioimpedance Data

To obtain more quantitative characterization of the proposed method we have
performed parameter estimation of 2R-1C models which reference values were
estimated from six common electrical bioimpedance (EBI) measurements: To-
tal Body Composition (TBC), Respiration Rate (RR), Trunk-Trunk (TT),
Leg-Leg (LL), Lung Composition (LC) and Arm-Arm (AA) [13]. Reference
values for model parameters as well as characteristic frequencies are shown in
Table 2.

Table 2 Reference values for 2R-1C models parameters [13].

EBI R1 [W] R2 [W] C2 [nF] fc [Hz]
TBC 917.5 629.0 3.42 30091.52
RR 58.5 23.9 75.7 25515.09
TT 99.0 42.3 44.0 25599.14
LL 510.0 450 6.55 25310.90
LC 81.46 19.64 47.7 33002.79
AA 364.6 379.0 6.2 34521.45

Values from Table 2 were used to calculate reference impedance data in
frequency range from 5 kHz to 100 kHz. Experiment was started with N =950
and then number of measurement frequencies was decreased with aim to com-
pare threshold required to have relative errors lower than 1% in estimation
of all three model parameters. Both approaches, with and without quadratic
interpolation, were used on the same dataset and in Table 3 obtained results
are presented.

Table 3 Comparison of the minimum number of measurement points required for
relative errors lower than 1%.

Without With Reduction of
EBI quadratic quadratic measurement

interpolation interpolation points [%]
TBC 91 17 81.319
RR 148 25 83.108
TT 138 25 81.834
LL 112 21 81.250
LC 231 29 87.446
AA 84 15 82.143

As it can be seen from Table 3, approach with quadratic interpolation
required more than 80% less measurement points to achieve estimation error
for all three model parameters lower than 1%.

Moreover, we have compared execution time of approaches with and with-
out quadratic interpolation. Additionally we have compared execution times
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of approach with quadratic interpolation and CNLS for the same number of
measurement points N . Our test platform was MATLAB R2013b installed
on Lenovo notebook with i5-4300M CPU at 2.60 GHz and 64-bit Windows 7
operating system. CNLS estimation was performed with MATLAB’s function
lsqcurvefit (Levenberg-Marquardt algorithm). Maximum number of function
evaluations and maximum number of iterations were set to 103, while termi-
nation tolerance on the function value and termination tolerance on estimated
vector were set to 10−4. To increase the speed of estimation, analytical ex-
pressions for Jacobian was supplied to the solver. Measuring performances
using stopwatch timer (tic and toc MATLAB commands), as shown in Ta-
ble 4, we determined that the approach with quadratic interpolation requires
slightly higher processing time. However, it requires significantly lower number
of measurement points for 1% error which can be a huge advantage if low-cost
microcontroller-based devices are used. Moreover, in conducted experiment
approach with quadratic interpolation was 30-45 times faster than CNLS, but
CNLS approach estimated values of model parameters with error lower than
0.005%.

Table 4 Comparison of execution times.

TBC RR TT LL LC AA
Without quadratic N 91 148 138 112 231 84

interpolation t [ms] 4.561 5.067 5.865 3.386 3.298 3.871
With quadratic N 17 25 25 21 29 15
interpolation t [ms] 5.060 5.949 7.037 4.480 4.085 3.895

CNLS N 17 25 25 21 29 15
t [ms] 180.621 190.501 190.925 193.935 179.834 186.247

3.2 Hardware-Based Experiment

The AD5933-based impedance measurement system (Fig. 9) reported earlier
[42] was used for impedance measurement of the analyzed 2R-1C model. Device
is based on 8-bit ATmega128 microcontroller and integrated circuit AD5933.
Communication between microcontroller and the AD5933 (device initializa-
tion, definition of measurement details and collecting measurement data) is
via I2C protocol. With developed device it is possible to perform frequency
sweep impedance measurement in frequency range from 5 kHz to 100 kHz with
maximum 511 points and frequency step as low as 0.1 Hz.

Accuracy tests of developed impedance measurement device have been per-
formed with series and parallel RC networks with values for R and C chosen
to ensure wide range of impedance magnitude and phase angle change. Ob-
tained results were compared with reference measurement results obtained
with Agilent 4263B LCR meter and Impedance/Gain-Phase Analyzer 4194A
from Hewlett Packard. For impedance magnitude in range from 100 W to
100 kW maximum system error for magnitude and phase angle measurements
was less than 3% and 2.5◦ in complete frequency range, respectively [39, 40].
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Towards practical applications for real-time impedance measurement and
parameters estimation with developed device, investigation how long is re-
quired to collect impedance data for one measurement point is required. The
theoretical sample time for a single measurement with the AD5933 is sum of
[14]:

– time required for the AD5933 to estimate the impedance values, and it is
approximately 1 ms for a commonly used system clock of 16 MHz,

– total time to perform all the I2C protocol instructions,
– settling cycles time, which can be calculated by the multiplication of the

total number of the settling cycles and the period of the excitation signal.

For the I2C frequency of 400 kHz, one settling cycle and exication fre-
quency of 50 kHz, the theoretical impedance sampling time is 1.895 ms, while
experimentally obtained time to perform all operations required for one mea-
surement at 50 kHz is around 1.7910 ms [14]. For excitation frequency of
100 kHz it is around 1.7911 ms [14]. Experimentally obtained values are mean
for 100 repeated measurements.

Fig. 9 The AD5933-based impedance measurement device.

The 2R-1C model has been made with the real components chosen with
nominal values as it was used in simulation part:R1=1000 W±5%,R2=470 W±5%
and C2=4.7 nF±5%. With these values nominal characteristic frequency can
be calculated as 23035.887 Hz. Using the AD5933-based measurement device
impedance measurement of used components in frequency range from 5 kHz to
100 kHz was performed. Obtained results (mean values ± standard deviation)
are: R1=983.37 W±0.67 W, R2=463.49 W±1.22 W, and C2=4.55 nF±0.06 nF.
Using mean values characteristic frequency can be calculated as 24175.876 Hz.
As it can be seen there is a slight difference in comparison with nominal values
of model parameters and characteristic frequency.

Impedance measurement of the 2R-1C model was performed in frequency
range from 5 kHz to 100 kHz in 29 frequency points, because in simulation
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part N = 29 was obtained as a threshold for 1% relative error in characteristic
frequency estimation using quadratic interpolation.

We have compared approaches with and without quadratic interpolation
in microcontroller-based implementation. Our test platform was Arduino Uno
board. Arduino Uno is based on ATmega328P microcontroller with 2 KB
SRAM, 16 MHz clock speed and in total 32 KB flash memory. Estimated
values of characteristic frequency, mean values of model parameters R̂1, R̂2,

and Ĉ2, and standard deviations σR1, σR2 and σC2 from measured data with
and without quadratic interpolation are shown in Table 5.

Table 5 Estimated values of characteristic frequency and model parameters for
N=29.

f̂c[Hz] R̂1[W]±σR1[W] R̂2[W]±σR2[W] Ĉ2[nF]±σC2[nF]
Nominal values 23035.887 1000±5% 470±5% 4.7±5%

Measured 24175.876 983.37±0.67 463.49±1.22 4.550±0.06
Estimated without

quadratic 23352.000 955.653±13.563 467.185±10.916 4.412±0.018
interpolation

Estimated with
quadratic 24409.671 972.629±8.290 479.621±5.647 4.490±0.04

interpolation

As it is shown in Table 5, standard deviations of mean values R̂1, R̂2,
and Ĉ2 estimated without quadratic interpolation are 1.419%, 2.337% and
0.406%, respectively. With quadratic interpolation these values are 0.852%,
1.167% and 0.913%. Additionally, we have explored frequency dependences of

estimated values of model parameters. Estimated values of R̂1, R̂2, and Ĉ2

at different frequencies are shown in Fig. 10-Fig. 12. As it was expected from
Table 5, values estimated with quadratic interpolation have lower frequency
dependence.
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Fig. 10 Estimated values of R̂1 at different frequencies.

Fig. 11 Estimated values of R̂2 at different frequencies.
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Fig. 12 Estimated values of Ĉ2 at different frequencies.

Values estimated with and without quadratic interpolation are used to
calculate impedance of the 2R-1C model using (4) in frequency range from
5 kHz to 100 kHz in 29 points. Comparison of calculated values with measured
data is shown in Fig. 13.

Fig. 13 Comparison of measured impedance and impedance calculated with estimated
values of model parameters.

Because of tolerance of nominal values and frequency dependent charac-
teristics of used components, as well as measurement noise there is a lack of
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actual reference values for model parameters. Because of that, we choose to
compare measured impedance and impedance calculated with estimated values
of model parameters. Relative errors (δR(ω)[%] and (δX(ω)[%])) for real and
imaginary part of measured and calculated impedance are shown in Fig. 14
and Fig. 15, respectively.

Fig. 14 Comparison of relative errors for real part of impedance.

Fig. 15 Comparison of relative errors for imaginary part of impedance.
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As it can be seen from Fig. 14 and Fig. 15, maximum differences between
measured and impedance calculated with quadratic interpolation are smaller
for real part of impedance (±1.197%<±2.328%) as well as for imaginary part
of impedance (±2.722%<±4.667%).

Additionally we have compared Root Mean Square Errors (RMSE) for
measured (Rmeas and Xmeas) and impedance (Rcalc and Xcalc) calculated
with values of model parameters estimated without and with quadratic inter-
polation, using equations for real

RMSER =

√∑N
i=1(Rcalc(ωi)−Rmeas(ωi))2

N
(32)

and imaginary part of impedance

RMSEX =

√∑N
i=1(Xcalc(ωi)−Xmeas(ωi))2

N
. (33)

Obtained values are shown in Table 6. As it can be seen, RMSE for cal-
culated impedance with quadratic interpolation are smaller for 42.828% (real
part) and 51.515% (imaginary part) in comparison for estimation without
quadratic interpolation.

Table 6 Comparison of RMSE for real and imaginary part of impedance.

Without quadratic interpolation With quadratic interpolation
RMSER 7.015 W 4.011 W
RMSEX 5.483 W 1.944 W

Measuring performances using Arduino stopwatch timer (function micros())
we determined that approach without quadratic interpolation estimated values
in 8.592 ms, while for approach with quadratic interpolation it was required
9.168 ms. Moreover, approach with quadratic interpolation required 6306 bytes
of flash memory and 1396 bytes of RAM, while approach without quadratic
interpolation required 5060 bytes of flash memory and 1364 bytes of RAM as
shown in Table 7.

Table 7 Performance comparison of approaches implemented on ATmega328P mi-
crocontroller.

Without quadratic interpolation With quadratic interpolation
Execution time [ms] 8.592 9.168

Flash memory [bytes] 5060 6306
RAM [bytes] 1364 1396

Even we can recognize that approach with quadratic interpolation requires
6.7% higher execution time, 24% more flash memory and 2.4% more RAM it
is still acceptable for practical use with low-cost microcontroller based devices.
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4 CONCLUSION

In this paper the method for non-iterative parameter estimation of the 2R-
1C model suitable for low-cost embedded hardware is presented. Approach
is based on use of quadratic interpolation for estimation of characteristic fre-
quency while the model parameters are calculated on provided set of analytical
expressions. Compared to the estimation approach without quadratic interpo-
lation, with described method it was possible to have the same relative error in
parameter estimation (lower than 1%) with 80% lower number of measurement
points.

Our hardware-based experiments showed suitability of proposed method
for low-cost microcontroller-based devices with limited resources regarding
power consumption, computation complexity and RAM usage. Obtaining re-
sults are promising for applications where portable operation is needed as it
eliminates need for complex data postprocessing.

As a future work we are directed towards integration of AD5933-based
impedance measurement system with presented non-iterative approach in com-
pact unit for in-situ parameter estimation of sensors or bioimpedance analysis.
Moreover, such integration requires design of appropriate filter for denoising
measurement impedance data which will be also part of our future work in
this field.

Acknowledgements The research was supported by the Ministry of Science and Technol-
ogy of the Republic of Srpska under contract 19/6-020/961-37/15, and by the EU’s H2020
MSCA project no. 690876.

5 Appendix

5.1 Code for Arduino implementation of approach without quadratic
interpolation.

1 float freq[29]={5000, 8392, 11784, 15176, 18568, 21960,
25352, 28744, 32136, 35528, 38920, 42312, 45704,
49096, 52488, 55880, 59272, 62664, 66056, 69448,
72840, 76232, 79624, 83016, 86408, 89800, 93192,
96584, 99976};

2 float real[29]={953.83, 913.05, 856.03, 797.76, 739.06,
685.83, 638.43, 597.17, 563.11, 532.74, 508.71,
485.33, 466.04, 450.31, 436.57, 424.68, 414.17,
405.25, 397.23, 390.55, 384.4, 378.86, 373.73,
369.97, 365.97, 362.66, 358.95, 356.06, 353.64};

3 float imag[29]={-127.03, -200.81, -257.01, -293.67,
-315.51, -326.35, -327.49, -323.5, -315.68, -306.52,
-294.35, -284.0, -273.58, -262.24, -250.99,

-240.52, -230.58, -221.0, -212.51, -204.05, -196.0,
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-188.53, -180.81, -174.94, -168.7, -163.73, -156.88,
-151.2, -146.11};

4 float w[29];
5 char i = 0;
6 float maxImag = 0.0;
7 char index = 0;
8 float z_pom_1[29], K[29], Re_est[29], Ri_est[29], Cm_est

[29];
9 float p_e1 = 0;

10 float Re_est_alg1=0, Ri_est_alg1=0, Cm_est_alg1=0;
11 float sum1 = 0, sum2 = 0, sum3 = 0;
12 unsigned long duration_alg1=0;
13
14 void setup()
15 {
16 Serial.begin(9600);
17 while (!Serial)
18 {
19 ;
20 }
21 for(i=0;i<29;i++)
22 {
23 w[i] = 2.0*22.0*freq[i]/7.0;
24 }
25
26 duration_alg1 = micros();
27 maxImag=abs(imag[0]);
28 index = 0;
29 for(i=1; i<29; i++)
30 if (abs(imag[i])>=maxImag)
31 {
32 maxImag = abs(imag[i]);
33 index = i;
34 }
35 p_e1 = freq[index];
36 p_e1 = 2.0*22.0*p_e1/7.0;
37
38 sum1 = 0;
39 sum2 = 0;
40 sum3 = 0;
41
42 for(i=0;i<29;i++)
43 {
44 z_pom_1[i] = -(imag[i]*w[i]*w[i] - real[i]*p_e1*w[i])

/(imag[i]*p_e1 + real[i]*w[i]);
45 K[i]=(real[i]*w[i]+imag[i]*p_e1)/(w[i]);
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46 Re_est[i] = z_pom_1[i]*K[i]/p_e1;
47 Ri_est[i] = K[i]* Re_est[i]/(Re_est[i]-K[i]);
48 Cm_est[i] = (Re_est[i] - K[i])/(z_pom_1[i]*K[i]*Re_est

[i]);
49 sum1 += Re_est[i] ;
50 sum2 += Ri_est[i] ;
51 sum3 += Cm_est[i] ;
52 }
53
54 Re_est_alg1 = sum1 / 29.0 ;
55 Ri_est_alg1 = sum2 / 29.0 ;
56 Cm_est_alg1 = sum3 / 29.0 ;
57
58 duration_alg1 = micros() - duration_alg1;
59 Serial.print("Without quadratic interpolation: ");
60 Serial.print(duration_alg1);
61 Serial.println(" us");
62 Serial.print("R1_alg1= ");
63 Serial.println(Re_est_alg1);
64 Serial.print("R2_alg1= ");
65 Serial.println(Ri_est_alg1);
66 Serial.print("C2_alg1= ");
67 Serial.print(Cm_est_alg1*1e9);
68 Serial.println(" nF");
69 Serial.print("Fc_alg1= ");
70 Serial.println(p_e1/(2.0*22.0/7.0));
71 }
72
73 void loop()
74 {
75 }

5.2 Code for Arduino implementation of approach with quadratic
interpolation.

1 float freq[29]={5000, 8392, 11784, 15176, 18568, 21960,
25352, 28744, 32136, 35528, 38920, 42312, 45704,
49096, 52488, 55880, 59272, 62664, 66056, 69448,
72840, 76232, 79624, 83016, 86408, 89800, 93192,
96584, 99976};

2 float real[29]={953.83, 913.05, 856.03, 797.76, 739.06,
685.83, 638.43, 597.17, 563.11, 532.74, 508.71,
485.33, 466.04, 450.31, 436.57, 424.68, 414.17,
405.25, 397.23, 390.55, 384.4, 378.86, 373.73,
369.97, 365.97, 362.66, 358.95, 356.06, 353.64};
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3 float imag[29]={-127.03, -200.81, -257.01, -293.67,
-315.51, -326.35, -327.49, -323.5, -315.68, -306.52,
-294.35, -284, -273.58, -262.24, -250.99, -240.52,

-230.58, -221, -212.51, -204.05, -196, -188.53,
-180.81, -174.94, -168.7, -163.73, -156.88, -151.2,
-146.11};

4 float w[29];
5 char i = 0;
6 float maxImag = 0.0;
7 char index = 0;
8 float z_pom_1[29], K[29], Re_est[29], Ri_est[29], Cm_est

[29];
9 float sum1 = 0.0, sum2 = 0.0, sum3 = 0.0;

10 float alpha = 0.0, beta = 0.0, gamma = 0.0, w1 = 0.0, w2
= 0.0, w3 = 0.0;

11 float a = 0.0, b = 0.0, c = 0.0, vertex = 0.0, fc_e2 =
0.0;

12 float p_interpolation = 0;
13 float Re_est_alg2=0.0, Ri_est_alg2=0.0, Cm_est_alg2=0.0;
14
15 unsigned long duration_alg2=0;
16
17 void setup()
18 {
19 Serial.begin(9600);
20 while (!Serial)
21 {
22 ;
23 }
24 for(i=0;i<29;i++)
25 {
26 w[i] = 2.0*22.0*freq[i]/7.0;
27 }
28
29 duration_alg2 = micros();
30 maxImag=abs(imag[0]);
31 index = 0;
32 for(i=1; i<29; i++)
33 if (abs(imag[i])>=maxImag)
34 {
35 maxImag = abs(imag[i]);
36 index = i;
37 }
38 alpha=abs(imag[index-1]);
39 beta=abs(imag[index]);
40 gamma=abs(imag[index+1]);
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41 w1=w[index-1];
42 w2= w[index];
43 w3= w[index+1];
44
45 a = (alpha*w2 - alpha*w3 - beta*w1 + beta*w3 + gamma*

w1 - gamma*w2)/((w1 - w2)*(w1*w2 - w1*w3 - w2*w3 +
w3*w3));

46 b = -(alpha*w2*w2 - alpha*w3*w3 - beta*w1*w1 + beta*w3

*w3 + gamma*w1*w1 - gamma*w2*w2)/((w1 - w2)*(w1*w2
- w1*w3 - w2*w3 + w3*w3));

47 c = -(- gamma*w1*w1*w2 + beta*w1*w1*w3 + gamma*w1*w2*
w2 - beta*w1*w3*w3 - alpha*w2*w2*w3 + alpha*w2*w3*
w3)/((w1 - w2)*(w1*w2 - w1*w3 - w2*w3 + w3*w3));

48 p_interpolation = -b/(2*a);
49 sum1=0.0;
50 sum2=0.0;
51 sum3=0.0;
52
53 for (i = 0 ; i < 29; i++)
54 {
55 z_pom_1[i] = -(imag[i]*w[i]*w[i] - real[i]*

p_interpolation*w[i])/(imag[i]*p_interpolation +
real[i]*w[i]);

56 K[i]=(real[i]*w[i]+imag[i]*p_interpolation)/(w[i]);
57 Re_est[i] = z_pom_1[i]*K[i]/p_interpolation;
58 Ri_est[i] = K[i]* Re_est[i]/(Re_est[i]-K[i]);
59 Cm_est[i] = (Re_est[i] - K[i])/(z_pom_1[i]*K[i]*

Re_est[i]);
60 sum1 += Re_est[i] ;
61 sum2 += Ri_est[i] ;
62 sum3 += Cm_est[i] ;
63 }
64 Re_est_alg2 = (float)sum1 / 29.0 ;
65 Ri_est_alg2 = (float)sum2 / 29.0 ;
66 Cm_est_alg2 = (float)sum3 / 29.0 ;
67
68 duration_alg2 = micros() - duration_alg2;
69
70 Serial.print("With quadratic interpolation: ");
71 Serial.print(duration_alg2);
72 Serial.println(" us");
73 Serial.print("R1_alg2= ");
74 Serial.println(Re_est_alg2,3);
75 Serial.print("R2_alg2= ");
76 Serial.println(Ri_est_alg2,3);
77 Serial.print("C2_alg2= ");
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78 Serial.print(Cm_est_alg2*1e9,3);
79 Serial.println(" nF");
80 Serial.print("Fc_alg2= ");
81 Serial.println(p_interpolation/(2.0*PI),3);
82 }
83
84 void loop()
85 {
86 }
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31. Ramı́rez-Chavarŕıa RG, Quintana-Carapia G, Müller MI, Mattila R,
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