University of Novi Sad

DSpace-CRIS Repository https://open.uns.ac.rs

2019-01-01

A framework for teaching
security design analysis
using case studies and the
hybrid flipped classroom

Luburi¢ Nikola, Sladié¢ Goran, Slivka Jelena,
Milosavljevi¢ Branko

Luburié, Nikola, Sladi¢, Goran, Slivka, Jelena, and Milosavljevié,
Branko. 2019. A framework for teaching security design analysis
using case studies and the hybrid flipped classroom. ACM
Transactions on Computing Education 19(3). doi: 10.1145/3289238.
https://open.uns.ac.rs/handle/123456789/688

Downloaded from DSpace-CRIS - University of Novi Sad

A Framework for Teaching Security Design Analysis Using
Case Studies and the Hybrid Flipped Classroom

NIKOLA LUBURIC, GORAN SLADIC, JELENA SLIVKA, and BRANKO MILOSAVLJEVIC,

University of Novi Sad, Faculty of Technical Sciences, Serbia

With ever-greater reliance of the developed world on information and communication technologies, con-
structing secure software has become a top priority. To produce secure software, security activities need to
be integrated throughout the software development lifecycle. One such activity is security design analysis
(SDA), which identifies security requirements as early as the software design phase. While considered an
important step in software development, the general opinion of information security subject matter experts
and researchers is that SDA is challenging to learn and teach. Experimental evidence provided in literature
confirms this claim.

To help solve this, we have developed a framework for teaching SDA by utilizing case study analysis and
the hybrid flipped classroom approach. We evaluate our framework by performing a comparative analysis
between a group of students who attended labs generated using our framework and a group that participated
in traditional labs. Our results show that labs created using our framework achieve better learning outcomes
for SDA, as opposed to the traditional labs. Secondary contributions of our article include teaching materials,
such as lab descriptions and a case study of a hospital information system to be used for SDA.

We outline instructions for using our framework in different contexts, including university courses and
corporate training programs. By using our proposed teaching framework, with our or any other case study,
we believe that both students and employees can learn the craft of SDA more effectively.

CCS Concepts: » Social and professional topics — Computer science education; CS1; « Security and
privacy — Software security engineering;

Additional Key Words and Phrases: Security-oriented curriculum, cybersecurity education, threat modeling,
risk assessment, security development lifecycle, architectural risk analysis, security requirements

ACM Reference format:

Nikola Luburi¢, Goran Sladi¢, Jelena Slivka, and Branko Milosavljevi¢. 2019. A Framework for Teaching Se-
curity Design Analysis Using Case Studies and the Hybrid Flipped Classroom. ACM Trans. Comput. Educ. 19,
3, Article 21 (January 2019), 19 pages.

https://doi.org/10.1145/3289238

1 INTRODUCTION

There is a growing business need for organizations to both utilize computer systems and
make them more accessible and connected with their environment. As a result, organizations
are becoming more exposed to the threat of cyberattackers. Recent years have seen various

Authors’ address: N. Luburi¢, G. Sladi¢, J. Slivka, and B. Milosavljevi¢, University of Novi Sad, Faculty of Technical Sciences,
Trg Dositeja Obradovic¢a 6, Novi Sad 21101, Serbia; emails: nikola.luburic@uns.ac.rs, sladicg@uns.ac.rs, slivkaje@uns.ac.rs,
mbranko@uns.ac.rs.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1946-6226/2019/01-ART21 $15.00

https://doi.org/10.1145/3289238

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21

https://doi.org/10.1145/3289238
mailto:permissions@acm.org
https://doi.org/10.1145/3289238

21:2 N. Luburi¢ et al.

cybersecurity-related incidents, including ransomware campaigns [10], power grid attacks [17],
and discoveries of 20-year-old vulnerabilities in widespread CPUs [8].

To combat the increasing threat of cyberattackers, organizations have started investing in the
security of their computer systems. Two approaches to securing computer systems have been
distinguished in literature and have been nicknamed “bolting security on” and “building security
in” [22]. The former is characterized by a set of tools and practices that can be utilized to increase
the security posture of an already-constructed computer system. The latter focuses on activities
applied during the production of a computer system with the goal of making the implementation
secure. Vendors who create and sell software and computer systems are tasked with providing
secure solutions, with security being both built in and bolted on. To achieve this, vendors require
a workforce trained in the craft of secure system design and construction, and the supply for such
professionals is limited.

At the start of the decade, information security experts Bill Whyte and John Harrison asked the
question “Why is secure software so seldom taught?” [32]. In their report, the authors examined
the current state of practice in the field of secure software development (SSD) in the broader sense,
encompassing security design analysis and other security-related software development lifecycle
activities. They concluded that the main obstacle to building more secure software is the lack of a
skill base. The authors discovered that most software companies lacked a structured approach to
developing secure software and instead relied on “good people” in their workforce.

This lack of interest and incentive from the industry, coupled with the scarcity of funding for
SSD research, resulted in a lack of people willing and able to research and teach SSD. As a result,
it is hard to find software engineers who are knowledgeable in SSD practices. Indeed, as Chess
and Arkin point out [5], finding and recruiting educated security professionals is a challenge,
and most organizations are forced to create security personnel from non-security technical staff
through expensive training programs.

In the past couple of years, however, cybersecurity has attracted a lot of attention, probably
inspired by global events such as Stuxnet [16] and the attack on the Ukrainian power grid [17]. In
2013, for example, “Information Assurance and Security” was officially added as a knowledge area
in computing curricula by ACM and IEEE Computer Society [12]. During the 2016 USENIX Work-
shop on Advances in Security Education, Yue presented a paper that discusses the current state
of education in the field of cybersecurity [34]. He points out that in recent years, the importance
of cybersecurity research and education has been increasingly recognized by major organizations,
including NIST, NSF, NSA, and others. While Yue praises the cybersecurity educational initiatives
provided by several institutions, he indicates that many universities still lack adequate offering
in their curricula. He reveals that none of the top 50 computer science programs in the US in-
clude cybersecurity in their core, while many institutions do not even offer elective courses on the
subject.

Since research in the field of SSD has had little support over the years, methodologies in this
area are still in their infancy. While there are a number of ideas and initiatives found in the indus-
try and literature, there is a surprising lack of actual experiments and evaluations. For example, a
recent systematic mapping study done by researchers from Chile [29] explores methods for sys-
tem threat identification and mitigation. Of approximately 30 identified methods, only three had
some experimental evidence, while half a dozen showed vague signs of application in an industrial
setting.

At our institution, we aim to tackle the problems listed above and contribute to the develop-
ment of a security-aware workforce of software engineers. As part of the introductory course
in cybersecurity, we teach a range of cybersecurity concepts, including applied cryptography,

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:3

authentication, access control, and SSD. In this article, we present a framework for teaching secu-
rity design analysis (SDA), an activity that represents one of the core pillars of SSD.

Using our framework, we have developed laboratory exercises, which students completed dur-
ing the 2016/2017 instance of our course. At the end of the semester, students conduct a complete
SDA of a case study that is new to them. We evaluate our approach by comparing the quality of
the SDA performed by students from the 2016/2017 course with the quality of the SDA achieved
by students from the 2015/2016, who attended traditional laboratory exercises. We determine the
quality of the SDA through a set of metrics and evaluation techniques proposed in Reference [24].
We also perform analysis to show that the obtained improvements are statistically significant.

Our comparative analysis determined that laboratory exercises generated using our framework
yield better learning outcomes for SDA when compared to the traditional labs. Based on these
results, we outline instructions for constructing a course or a workshop using our framework,
which can be used to train students or employees on the subject of SDA.

Secondary contributions of this article consist of teaching materials, which include lab descrip-
tions and a case study of a hospital information system.

The rest of the article is structured as follows: In Section 2, we examine SDA methodologies, as
well as existing efforts in the field of cybersecurity education. Section 3 presents our framework for
teaching SDA. Here we show the parts of the framework and discuss the needed inputs and ways in
which to process them to develop laboratory exercises. We conclude this section by illustrating an
application of our framework, which results in a set of labs that we used for the 2016/2017 instance
of the course. Section 4 describes the framework evaluation. Here we examine the differences
between the two instances of our course and explain our experimental design. We further discuss
the student participants and offer a detailed analysis of the evaluation metrics used to assess the
quality of our method. In Section 5, we discuss our findings and list the limitations of our study.
Section 6 concludes our research and analyzes directions for further work.

2 RELATED WORK

When designing our course, we had to find answers to two important questions: what to teach and
how to teach it. The first part of this section examines security design analysis techniques described
in the literature. The second part of this section focuses on methods used to teach secure software
development.

2.1 Security Design Analysis

Before we begin examining the various SDA methods, it is important to define a common un-
derstanding of what SDA is, as some ambiguity and inconsistency exist in the literature. SDA,
sometimes referred to as threat modeling, entails the assessment of a software or system design
regarding its ability to withstand attacks from adversaries [31]. What follows is a list of character-
istics, which further describe SDA. This is not an exhaustive list but rather serves as an overview
of the primary features of SDA:

e It represents a security-focused software development activity.

o We call targets of SDA modules. A module can be a minor component that is part of a
software program; a software program; an enterprise information system, which consists
of many software programs; or anything in between. The term module is used here as an
umbrella term to encompass different levels of granularity of software components.

e The input for SDA is a set of design artifacts (i.e. architectural, dataflow, deployment dia-
grams) and security requirements for the target module.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:4 N. Luburi¢ et al.

e The purpose of SDA is to use the input information to determine threats to the target mod-
ule, vulnerabilities introduced by the module design, as well as mitigation strategies that
help achieve a higher security posture for the module.

e The output of SDA is a list of recommendations, which assist decision makers in managing
risk, and help guide development staff in constructing a more secure solution. This is often
referred to as the threat model document.

e SDA is often conducted by the team (or some subset of it) developing the target module, but
it can also be performed by third-party auditors, the internal security team, or some other

party.

In recent years, a number of SDA techniques have been proposed, both by the industry and
the scientific community. One of the earliest proponents of secure software development was Mi-
crosoft, and SDA is a key activity of their security development lifecycle (SDL). During his time
in Microsoft, Shostack wrote the book on SDA [28], focusing on different SDA strategies, threat
management, supporting tools, and so on. Another prominent author on the subject is Schoenfield.
In his book [26], Schoenfield covers attacker-centric SDA and describes his technique, which he
illustratively applies to a set of case studies. He points out that SDA is both difficult to teach and
difficult to learn and states that, based on his experience, only apprenticeship programs seem to
work. Other notable organizations that promote and integrate SDA into their software develop-
ment lifecycle include the SANS Institute [3], the Open Web Application Security Project (OWASP)
[21], Adobe Systems Incorporated [11], and others. While each technique has unique aspects, all
share the same common steps. We use these core steps as a baseline for our SDA technique, which
we describe in detail in Section 3.3, where we talk about the concrete application of our framework.

Despite the growing interest in SDA, there have been few formal studies that test the effec-
tiveness of these techniques. Scandariato et al. conducted a descriptive study, through which they
evaluated Microsoft’s STRIDE technique [24], which presents a method for threat identification,
one of the main steps of SDA activity. The researchers performed their study in laboratory condi-
tions with the help of 57 students and concluded that STRIDE was not difficult to learn or execute,
but it did produce many false negatives and was time-consuming. Researchers from Norway per-
formed a different kind of study, where their goal was to compare the effectiveness of attack trees,
as compared to misuse cases [20]. Two experiments were conducted, where the first had 28 par-
ticipants, while the second had 35. The results showed that attack trees were more effective when
it came to identifying new ways in which a threat might be realized. We integrate both STRIDE
and attack trees into the SDA technique that we teach our students.

2.2 Teaching Approaches in Secure Software Development

When it comes to teaching methods in the field of secure software development, there are only a
handful of initiatives described in the literature, and almost all of them lack any form of evaluation.

Research was conducted under the NSF project “Developing case studies for information assur-
ance education” [7]. As aresult of the project, 12 case studies were created to be used in information
assurance and risk management courses. Several publications were released that present the use of
these case studies in different courses, where the impact on student learning was assessed. In gen-
eral, the results showed that the use of the case study method was effective and that it enhanced
learning.

Researchers from the Rochester Institute of Technology experimented with several teaching
activities as part of their Engineering of Secure Software course [15, 19]. In Reference [19], Me-
neely and Lucidi introduce the Vulnerability of the Day, an activity whose purpose is to increase
awareness of relevant vulnerabilities. During the first 10 minutes of each class, the teaching staff

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:5

demonstrate a vulnerability through live code examples and defines appropriate mitigations. While
no formal evaluation of the effectiveness of the teaching method was performed, the authors note
the overwhelming interest of the students for this activity, measured through questionnaires.

The same team of researchers created another classroom activity [15]. Students had to design
a secure system, where one student acts as a malicious insider whose goal is to produce a flawed
design, which can allow an attacker to infiltrate the system once it is created. Seen as a form of
gamification, this initiative pins the students against each other without knowing who the insider
is, stimulating a fun environment in which the students learn about threat analysis through attack
and countermeasure identification. No experiment was conducted to test the effectiveness of this
method, but student satisfaction was rated using a questionnaire based on a Likert scale.

Another group of researchers from the same institution created a multidisciplinary course that
focuses on applied cryptography and examines the algorithmic, engineering, and practical aspects
of security [18]. The article describes the various challenges of a security-focused multidisciplinary
course and offers a thorough description of their course plan and lab learning goals and procedures.
Evaluation of the course is conducted using questionnaires presented to the students to assess
whether the learning objectives have been achieved.

Gamification has gained some traction when it comes to teaching cybersecurity. Over the years,
several card games were produced to facilitate cybersecurity education, with many focusing on
SDA. Denning et al. [6] constructed a card game called Control-Alt-Hack, which acts as a light-
weight learning tool that raises awareness about cybersecurity and offers teaching staff a light-
hearted way to talk about threats, attacks, and countermeasures. They evaluate their game by
distributing copies of the game to a dozen information security courses, along with a survey to be
filled by the teaching staff. The results of the questionnaire show that the game is well received
and accomplishes the goal of facilitating interactive cybersecurity education.

Taking a similar approach, Shostack produced the Elevation of Privilege card game with the
goal of teaching developers at Microsoft the craft of SDA [27]. Through his research, Shostack
identified that the primary challenge to efficient SDA is the lack of intuition when it comes to
determining threats, attack vectors. and security controls on a real system. Shostack notes that
implementing security features is usually only slightly more challenging than implementing any
sort of software feature. However, understanding where an attacker might strike or how an asset
might be compromised is something that alludes many software developers. Elevation of Privilege
was explicitly designed to teach cybersecurity in an enticing, supportive, and non-threatening
way. No experimental evaluation is performed to test the efficiency of Elevation of Privilege.

One novel approach to developing the intuition that Shostack mentions was proposed by Kohno
and Johnson [14]. In their work, the authors concur that the students need to attain a mindset
focused on the broader societal and contextual issues surrounding information security. They use
science fiction prototyping to stimulate such thinking, where students are asked to research about
cutting-edge technologies, extrapolate their development to the near future, and imagine threats,
vulnerabilities, attacks, and controls related to these future systems. While the authors note the
usefulness of science fiction prototyping, no experiment nor evaluation is presented.

Recently, Carranza and DeCusatis critiqued the conventional approaches employed in cyberse-
curity education, both at universities and in industry-certified programs [4]. The authors recog-
nized a tendency to emphasize memorization of facts over a more in-depth cognitive understand-
ing of the subject. They propose the use of the flipped classroom model to teach cybersecurity,
where students are expected to complete weekly reading assignments, after which they discuss the
subject matter with the teaching staff through consultations. Furthermore, the authors examine
a variant of the flipped classroom, called the hybrid flipped classroom. Here, students addition-
ally attend group lectures, so as to gain a different view from the textbook on complex topics like

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:6 N. Luburi¢ et al.

encryption and public key infrastructure. Once again, no formal evaluation was conducted to test
the efficiency of the hybrid flipped classroom.

Finally, researchers from the Anderson School of Management examined cybersecurity training
initiatives and awareness campaigns held in corporations [13]. The article examines different types
of cybersecurity training and awareness methodologies and tools. The authors conclude that the
current cybersecurity training and awareness programs are limited in their efficacy and list several
ways in which this can be improved, including the use of the flipped classroom.

During our previous iterations of the course, we found that even students who did not attend
laboratory exercises had little trouble learning how to use and implement security controls once
they knew which specific controls to implement. However, the question of when a security control
is needed and when to use a specific security control had alluded many students, even the ones that
attended every class, signifying the lack of in-depth understanding of the subject. These findings
fall in line with the conclusions made by Carranza and DeCusatis [4], as well as Shostack [27].
Based on this, we decided that the hybrid flipped classroom would be suitable for our context. We
gave reading materials for students to learn on their own what specific security controls exist and
how to use them, while using the laboratory exercise to put more emphasis on recognizing when
to use them.

The most notable research that inspired our new course design is in References [4] and [13],
though other examined literature did affect our overall design, especially articles related to the
use of case studies in the classroom, developed under the NSF project [7].

3 THE TEACHING FRAMEWORK

In this section, we examine our teaching framework. Section 3.1 outlines the main components,
inputs, and outputs of the framework. Section 3.2 describes the process of using our framework.
Finally, Section 3.3 demonstrates the use of the framework that we utilized when we created our
new laboratory exercises.

3.1 Framework Components

Our proposed framework consists of four parts: (1) the applied security design analysis method,
(2) one or more case studies for which the SDA will be conducted, (3) the preparatory materials
containing enough information for the lab participants to actively participate in the analysis, and
(4) the laboratory exercises constructed by using our framework.

The input for the framework is the SDA method that is the main learning goal. The selected SDA
method guides the design of the laboratory exercises. A single workshop might cover a specialized
SDA, while SDAs targeting a broad domain may span several courses.

The preparatory materials are the materials that lab participants need to examine before the lab.
This can be anything from reading materials (i.e., book chapters, scientific articles, blog posts) to
videos (i.e. conference presentations, online course segments). In the context of security design
analysis, these materials should detail vulnerabilities, attacks, and/or security controls, grouped
around the distinct SDA subactivity.

The case study is the target of the SDA application and represents a module (as described in
Section 2.1. The size and complexity of the case study dictates the time required for a complete
analysis to be conducted. A single case study might be sufficient to cover all aspects of an SDA,
though multiple case studies may be examined to cover the SDA in-depth and/or reinforce learning.

Finally, the laboratory exercises are the main output of the framework that contain preparatory
materials for the lab participants and guidelines for the teacher on how to apply the SDA on the
case study, using the information described in the preparatory materials.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:7

Framework usage

More subactivities?

Ves‘—‘

No

Examine next
subactivity

Decompose SDA into

Choose SDA g
subactivities

Security Design
Analysis Method

Determine related
security concepts

Create preparatory
materials

Preparatory
materials

Construct case
studies that fulfill all
requirements

Define case study
requirements

Case study

Formulate final flow
of labs

Determine lab flow

Laboratory excercises

Ves Split into multiple
labs

Lab flow complex?

Fig. 1. Usage of the teaching framework to construct laboratory exercises.

3.2 Framework Usage

Our teaching framework helps formulate the laboratory exercises for teaching SDA. The usage
of our framework is a process that takes as input the components listed in the previous section,
as well as the constraints regarding the number of labs available and the length of each lab and
outputs a set of laboratory exercises. The process is illustrated in Figure 1.

The first step of this process is to choose the concrete SDA method and set it as the learning
goal of the labs. The next step entails dividing the SDA activity into aspects or subactivities. The
decomposition of the SDA method should take into account the complexity of the method and the
time limitations (number of labs, duration of each lab).

Each subactivity is analyzed to determine the related security concepts (i.e., attacks, vulner-
abilities, security controls). Preparatory materials are created that teach the identified security
concepts. These should contain information that is easy to consume, while being relevant for the
discussions during the lab. It should be noted that the construction of preparatory materials can
be a vast undertaking if the subject matter is complicated.

To construct suitable case studies, case study requirements for the particular SDA subactivity
and identified security concepts need to be collected. For example, if a subactivity of an SDA exam-
ines threats of loss of confidential data, then the case study needs to work with sensitive data. Re-
quirements for such a case study might be that it handles sensitive data, transports it over internal
and external networks, and stores it inside a database. The breadth of the case study requirements
is limited only by the time limit of the lab.

With a general idea of what the case study will look like, the set of security concepts that will be
examined during the lab, and the targeted subactivity of the SDA, the lab constructors determine
the general flow of the lab. If the lab appears to be too complex for the given time frame, then the
lab can be split into multiple labs (provided that there is room to accommodate this).

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:8 N. Luburi¢ et al.

This loop repeats until preparatory materials and case study requirements are created for each
subactivity of the SDA method. Once all case study requirements are defined, the appropriate case
studies should be created. The number of case studies can range from one to many, where one
case study can be examined during one or multiple labs, while one or multiple case studies can be
examined during a single lab. Each case study needs to be documented, so that lab participants can
familiarize themselves with it, either through preparatory materials or during the lab exercise.

Finally, once the case study set is defined, the laboratory constructors need to formulate the
final flow for all labs before the laboratory exercises are fully created. During this step, labs can be
merged, further divided, or omitted based on the constraints of the working environment (equip-
ment, time, etc.).

Following the method of the hybrid-flipped classroom, participants should go over the prepara-
tory materials before the lab exercise. During the exercise, the teacher should guide the participants
to complete the subactivity on the relevant segments of the case study by utilizing what they have
learned from the preparatory materials and expanding upon that base.

3.3 Framework Application

We utilized our framework in the 2016/2017 instance of our course to create the laboratory exer-
cises. To illustrate the usage of our framework we define our SDA method, our case study and the
content of the preparatory materials.

3.3.1 Security Design Analysis Method. Following the process depicted in Figure 1, we first
choose the SDA method. From the examined methods in Section 2.1, we extracted the common
steps into an SDA method suitable for web-based enterprise information systems, as our students
were familiar with such systems. Our method most resembles the one proposed by OWASP [21]
and consists of the following three high level steps:

(1) Decomposing the module;
(2) Threat analysis;
(3) Risk analysis.

The first step takes as input the functional and security requirements of the system, as well as
all documents and diagrams produced during the design phase (i.e. use case diagrams, deployment
diagrams, etc.). Assets that require protection are identified. Actors that interact with the system
are listed, including the entry and exit points through which their interaction takes place. Trust
boundaries are determined and dataflow diagrams are produced to visualize both the data flowing
through the system and the attack surface.

Once a proper understanding of the system has been achieved, threats are identified during
the threat analysis step. We define threats as events that harm security objectives of assets. If a
data asset is confidential, then a threat is the loss of that confidentiality. This is in line with Mi-
crosoft’s STRIDE technique [24] for threat classification and discovery. We integrate STRIDE into
our SDA method and use it to divide our SDA into subactivities. To examine identified threats in
more detail, and determine the vulnerabilities of the system and attacks that realize the threat, we
decompose threats using attack trees [25]. The final part of the threat analysis step is determining
countermeasures at the design, implementation, deployment, and/or operations level.

Finally, during risk analysis, the identified threats are assessed based on the impact and the
likelihood of it occurring. Risk mitigation strategies are selected, and final security controls are
determined. This might include changes to the system design, additional work for the development
or deployment team, or even additional activities required by management (i.e., the installation of
annual social engineering educational courses for employees).

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:9

Table 1. Defined Subactivities of the Chosen SDA Method

Subactivity Description

Decomposing the module The case study is introduced. Subsystems, actors, assets, entry points, and
dataflows are identified. The output of this step is a set of dataflow
diagrams of the system and a set of threat agents.

Threat analysis: Threats related to information disclosure and tampering are identified and

Information disclosure, decomposed for the target module. Focus is placed on attacks and

Tampering vulnerabilities mitigated by cryptographic controls.

Threat analysis: Denial of Threats related to denial of service are identified and decomposed for the

service target module. Focus is placed on attacks and vulnerabilities mitigated by
network segmentation, high availability design, and DDoS protection
controls.

Threat analysis: Spoofing, Threats related to spoofing and repudiation are identified and decomposed

Repudiation for the target module. Focus is placed on attacks and vulnerabilities
mitigated by authentication and logging controls.

Threat analysis: Elevation Threats related to elevation of privilege are identified and decomposed for

of privilege the target module. Focus is placed on attacks and vulnerabilities mitigated

by access control and input validation controls.

Risk analysis Security requirements for the particular case study are examined to
determine the impact of each threat. Basic risk calculation is performed to
determine a prioritized list of security controls.

Table 2. Preparatory Materials Related to Chosen SDA Subactivities Listed in Table 1

Subactivity Preparatory material content

Decomposing the module Case study description

Threat analysis: Information ~ Symmetric ciphers, asymmetric ciphers, hash functions PKI, digital
disclosure, Tampering signatures, TLS, password attacks

Threat analysis: Denial of Distributed denial of service attacks, High availability design
service

Threat analysis: Spoofing, Authentication controls, multi-factor authentication, session
Repudiation management, logging, spoofing attacks

Threat analysis: Elevation of ~ Role-based access control, access control lists, input validation controls,
privilege injection attacks

Risk analysis Risk management process description

We divide the selected SDA into six subactivities, which are listed in Table 1. Each subactivity
is examined during one laboratory session. When appropriate, we analyze previous subactivities
to introduce new attacks, vulnerabilities, and/or controls relevant to previous threats.

3.3.2 Preparatory Materials. Our preparatory materials contain cybersecurity concepts, at-
tacks, vulnerabilities, and countermeasures concerning web-based information systems. The con-
cepts covered in the materials are grouped based on the related subactivity, as demonstrated in
Table 2.

3.3.3 Case Study. Based on the subacitivites listed in Table 1, and the security concepts iden-
tified in Table 2, we constructed a set of requirements for the case study, which are presented in
Table 3.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:10

N. Luburi¢ et al.

Table 3. Case Study Requirements Related to Chosen SDA Subactivities Listed in Table 1

Subactivity

Case study requirements

Decomposing the module

Threat analysis: Information
disclosure, Tampering

Threat analysis: Denial of
service

Threat analysis: Spoofing,
Repudiation

System needs to be web-based, consist of multiple applications, and
familiar to the context of the participants.

System should process, transmit, and store sensitive data. System
should work with password-based authentication.

Some part of the system should require high availability. Some part of
the system should communicate over the Internet.

System should have password-based authentication for one group of
users and multi-factor authentication for another group.

System should contain service-to-service communication that requires
authentication.

System should contain sensitive functions that demand accountability.

Threat analysis: Elevation of
privilege

System needs to have some form of shared user interface to
demonstrate access control.

System needs to have OS-level assets (i.e. files) that require access
control.

System needs to have some forms of command interpreters (i.e. SQL
database, XML parser).

System needs to have some form of security requirements derived from
laws and regulations.

Risk analysis

For our case study, we formed a description of a hospital information system (HIS) by examining
scientific articles and grey literature related to applications of technology to the healthcare domain.
The HIS was chosen as a suitable and highly relevant case study for the security assessment.
First, it can be quite complex, servicing a wide array of different actors, which makes choosing a
representative subset of functionality that much easier. There have been a number of papers and
articles that call for, examine, and present technological innovation in the field of healthcare [9,
30]. As people live longer, more attention is directed at Smart Health systems that optimize the
healthcare industry and reduce costs. The second reason the security analysis of such a system is
suitable for our needs is the fact that hospitals deal with sensitive data. In particular, health records
have been a major target of cybercriminals, but there is also a wide array of sensitive data common
to most business systems, like personally identifiable information, financial records, and system
user credentials. There are a number of articles in the literature calling for and proposing different
security measures to protect these systems [2].

Our HIS case study is imagined to be deployed on a set of machines inside the hospital. The sys-
tem interacts with a number of different actors, each chosen to present a particular set of attacks.
This includes:

e Hospital management, which consists of a number of staff members who handle human
resources, finances, hospital equipment, operating room schedules, and so on. This part of
the system falls in the domain of business informatics. Managers interacts with the system
through a web application, from their workstations that are located inside the hospital;

e Medical staff, including physicians, technicians and other relevant subjects concerned with
patient management. Physicians use the system to examine their schedule, follow their
patient’s treatments and health records, communicate with their patients as well as with
the management, and so on. Like hospital management, the medical staff interacts with the
system inside the corporate network, using a web application;

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:11

e Patients, which use the system to follow their hospital appointments, recommended diet and
therapy, treatment history, and so on. They interact with the system over the internet, using
a mobile or web application. Following the current trends in technological development, a
patient can have a number of wearable or implanted devices, which monitor the patient’s
physiological parameters and send them to the HIS;

e The government, which periodically contacts the hospital to get statistical data. The govern-
ment service sends a request over the internet and uses the retrieved data to monitor the
health of its citizens, detect early signs of epidemics or high volumes of a particular type of
illness.

The resulting flow of the labs generated by our framework are described in detail in Section 4.2.
It should be noted that we divide the second subactivity (threat analysis: information disclosure
and tampering) into two labs, as the topics covered by this subactivity (cryptographic primitives
and applied cryptography) require more time to go through. Furthermore, we do not construct a
separate lab for the third subactivity (threat analysis: denial of service), as we consider it, for the
most part, out of scope. The parts relevant for our students we integrate into other labs, where
appropriate.

4 FRAMEWORK EVALUATION

In this section, we describe the evaluation of our proposed framework. In Section 4.1, we describe
the context in which our course resides and the knowledge students gain before attending our
course. Section 4.2 describes the structure of the two instances of our course, which we compare
as part of our evaluation. Section 4.3 details our experiment design.

4.1 Course Context

Our course is an elective course for fourth-year undergraduate students of computer science stud-
ies. Around 50 students enroll in this course each year. Prior to attending our course, the students
complete several mandatory courses covering the topics of data modeling, software engineering,
network-based systems, distributed software systems, and information systems. They have no
prior knowledge related to the domain of information security or any of its subdomains.

Based on student’s prior knowledge, we focus our course on topics related to application and
system security. As most of our students find employment as software engineers, we focus on
topics that offer the most value to future software designers and developers. Topics include applied
cryptography, data security (protecting data in transit, storage, and in use), authentication and
access control mechanisms, and secure software development, with a focus on security design
analysis.

4.2 Course Structure

Two instances of the course are relevant for this research. The 2015/2016 instance (referred to as
the old course) uses the traditional classroom approach, where the professor holds lectures on a
weekly basis for all students, while the teaching assistant (TA) runs laboratory exercises for groups
of 10 to 16 students. The laboratory exercises focus on the topic from the previous week’s lecture,
where students complete assignments that require them to implement or use a specific security
control or stop a common attack.

The 2016/2017 instance (referred to as the new course) contains one major difference, where the
laboratory exercises utilize the hybrid flipped classroom [4] instead of the traditional approach.
Preparatory materials containing security controls, attacks, and vulnerabilities are provided to

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:12 N. Luburi¢ et al.

students beforehand, while the lab exercise is executed as a group discussion, in which students
apply the learned content as part of an SDA on the case study.

The lecture materials used in both instances of the course are mostly identical, where the mate-
rials for the new course contain minor improvements in content and wording. However, to accom-
modate the hybrid flipped classroom, the materials for the laboratory exercises are restructured
for the new course. In both instances of the course, there are six laboratory exercises, each lasting
2 hours.

The outline of the lab structure for the old course is as follows:

(1) The first lab presents an introduction to information security, with a focus on cybersecu-
rity. A discussion of the digitalization of society takes place, focusing on security aspects.
Various motivations of attackers are examined and the basic dictionary related to infor-
mation security is examined (i.e., confidentiality, integrity, availability, threats, attacks,
countermeasures).

(2) The second lab inspects cryptographic primitives, including symmetric ciphers, asymmet-
ric ciphers, and hash functions. Lab participants run code examples and modify them to
achieve confidentiality and integrity of message exchange between two actors.

(3) The third lab examines the public key infrastructure (PKI) and key management solu-
tions. Students learn about digital signatures, examine X.509 certificates, and run applica-
tions for certificate issuing, revocation, and secure storage. Finally, transport layer security
(TLS) is discussed.

(4) The fourth lab focuses on authentication, where students examine different authentication
controls (passwords, smart card, biometrics), session management and logging controls.
Spoofing and session attacks are discussed, such as session hijacking and cross-site request
forgery.

(5) The fifth lab investigates access control mechanisms and ways to circumvent them. Role-
based access control and access control lists are discussed. Injection attacks are analyzed
that bypass access control checks and present a variety of threats, from information dis-
closure to denial of service. This includes SQL injection, cross-site scripting, XML injec-
tion, and buffer overflows. Input validation controls, such as whitelists and prepared state-
ments, are examined.

(6) The sixth lab examines the hospital information system case study and applies everything
that was learned during the past five labs. Participants, guided by the teacher, perform a
security design analysis where they try to identify sensitive assets, threats, vulnerabilities,
and attacks and define security controls that act as countermeasures.

The new course covers the same topics and uses the same materials but is almost completely
restructured. Using the lab materials from the old course, preparatory materials are constructed
and given to the students to examine before the lab, while the lab is dedicated to the application
of that knowledge through the security design analysis of the HIS. While performing the SDA, the
lab participants discuss the content of the preparatory materials, and the teacher helps clarify any
misconceptions that arise. The outline of the lab structure for the new course is as follows:

(1) The HIS is introduced and examined as a real-world system that supports healthcare in-
stitutions. The system’s purpose is discussed, as well as its actors, functions, dataflows,
subsystems, and entry points. Initial security requirements are discussed and attackers are
determined.

(2) Threats related to the loss of confidentiality and integrity of the data processed by
the HIS are examined. Sensitive data assets, such as financial information, patient

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:13

information, and user credentials, are discovered, and protective mechanisms are pro-
posed using cryptographic primitives. Cryptographic keys are identified as sensitive as-
sets that require further protection.

(3) Controls proposed in the previous lab are enhanced using mechanisms such as PKI and
TLS. Certificate verification is examined and attacks related to these technologies, such as
certificate pinning and attacks against TLS, are discussed.

(4) Authentication and logging controls and attacks are examined in the context of the HIS.
User interfaces and services that require authentication are determined and appropriate
controls are selected. Sensitive actions of the HIS are determined and logging controls that
achieve non-repudiation are designed.

(5) Access control and injection attacks are examined in the context of the HIS. Entry points
that accept external input are identified and the optimal input validation controls are se-
lected. An access control matrix that defines all user groups, roles, and permissions for
the HIS is constructed.

(6) The final lab is spent discussing security requirements and risk analysis. Regulations such
as HIPAA [1] are examined in the context of the HIS, and a basic risk analysis method is
presented and performed to determine the critical vulnerabilities that need to be patched
and the security controls that need to be applied to the HIS.

The main difference between our old and new course design, relevant to our experiment, is
in the way we structure the teaching materials. In the new course, the lab time is dedicated to
discussion and learning the difficult craft of security design analysis. In our experience, security
concepts, such as specific controls, attacks, and vulnerabilities, have generally shown to be easy
to learn, which is why we leave this to the students, as part of their preparation for the lab.

4.3 Experiment Design

To successfully complete the 2015/2016 instance of the course, students had to secure a partial
banking system implemented as part of another course. They did this by producing a security
design analysis of the system before implementing it, after which they implemented the identified
security controls in their code and configurations.

To successfully complete the 2016/2017 instance of the course, students had to complete the same
project as their predecessors, the 2015/2016 group. They performed a security design analysis of the
banking system and then implemented the identified security controls during system development.
It should be noted that a full banking system can have hundreds of critical assets, each of which
can have several accompanying threats. To reduce the student workload, a subset of the system is
examined.

Another thing to note is that during project development of both instances of the course, teams
of students had a series of checkpoints for which they had to produce certain deliverables. We did
this to track the progress of students more easily, as well as to reduce the chance of cheating.

By providing both groups of students with an identical project and roughly the same amount
of time to complete it, we were able to do a comparative study of the effectiveness of our teaching
technique, as opposed to the conventional teaching approach.

Students are put into teams of three or four members. By comparing the quality of threat models
produced by teams from both groups of students, we evaluate our new design. We have adopted
the approach from Reference [24] to define the quality of a threat model as a set of metrics, which
include the following:

e The quality of the produced dataflow diagrams (DFDs);
e The quality of the threat identification step.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:14 N. Luburi¢ et al.

The quality of the DFDs is measured by examining:

e The number of produced DFDs;
e The average number of elements on each diagram.

We compare DFD sets produced by teams from both groups to a baseline DFD set produced by the
professor and the TA.
The quality of the threat identification step is evaluated by looking at the following metrics:

e The number of correctly identified threats (TP, true positives);
e The number of incorrectly identified threats (FP, false positives);
e The number of unidentified relevant threats (FN, false negatives).

The maximum number of relevant threats a student can identify (T,.; = TP + FN) is closely tied
to assets, as relevant threats are defined as losses of security objectives. We define relevant assets
as assets for which true positive threats have been identified. This excludes abstract assets such as
company reputation and user satisfaction. We also aggregate similar assets into a single asset. For
example, all log files located on the bank corporate network are considered a single asset. The list
of relevant assets includes but is not limited to:

e Data assets, including user credentials, credit card information, invoices, reports, and so on;

e System assets, including important subsystems and services, log and configuration files, the
website, and so on;

e Infrastructure assets, such as workstations, the network, ATMs, and so on.

The maximum number of relevant threats that each student team can identify is directly linked
to the concrete assets identified by each team Ngses. For each individual team, the professor and
TA have analyzed the assets obtained by that team to determine their T,;.

We summarize the obtained results by calculating the average correctness (precision) and av-
erage completeness (recall) of the individual teams of both class instances. The correctness of an
individual team is calculated by dividing the number of correctly identified threats to the total
number of threats identified by a particular team:

TP

correctness = —————. (1)
TP+ FP

The completeness of an individual team is calculated by dividing the number of correctly identified
threats with the estimated maximum number of threats (for that individual team):

@)

completeness =
rel

Our aim is to determine whether the student teams of 2016/2017 instance have on average
achieved significantly higher correctness and completeness compared to 2015/2016 instance stu-
dent teams. Thus, we analyze the obtained results by applying an unpaired test as we had different
subjects in the two test groups. We use the Mann-Whitney test, a non-parametric analog of the
unpaired #-test that does not require the assumption of normal distributions. We validate the null
hypothesis Hy: “There is no difference between student teams of 2015/2016 instance and student
teams of 2016/2017 instance in terms of achieved correctness/completeness.” For statistical tests,

we set the significance level of & = 0.05.
We did not measure the quality of the threat decomposition step, nor the risk analysis step.
Regarding threat decomposition, we could not find a suitable way to measure the quality of this
step, as no evaluation metrics are proposed in literature. We decided to avoid comparing the quality

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:15

Table 4. Quality of the DFDs

Group 2015/2016 students 2016/2017 students Teaching staff
Avg. # of level 1 DFD elements 9.64 10.71 10

of level 2 DFDs 2.29 2.24 3

Avg. # of level 2 DFD elements 6.09 8.56 9.33

per diagram

of level 3 DFDs 6.36 0.24 0

of the risk analysis, as the 2016/2017 student group had one whole laboratory dedicated to this
activity, while the 2015/2016 group only briefly examined this step.

To measure the effectiveness of our new approach, we only take into account threat model
documents produced by teams where the document owner was present during the six laboratory
exercises.

Twenty-eight students were present during the six lab sessions of the 2015/2016 instance, while
36 students attended the six lab sessions during the 2016/2017 instance. Not all of these students
were threat model document owners as some of them belonged to the same team. Overall, 14
threat models were examined from the 2015/2016 instance of the course, while 17 threat models
were looked at from the 2016/2017 instance.

5 RESULTS AND DISCUSSION

In this section, we discuss the results of our experiments and list the limitations of our study.

5.1 Experiment Results

We first analyze the quality of the DFDs produced by the two groups of students and compare
them with the quality of the DFDs produced by teaching staff. Each group produced 1 level 1 DFD
and multiple lower-level DFDs. We measure the average number of elements on the level 1 DFD,
the number of level 2 DFDs, the average number of elements on level 2 DFDs, and the number of
level 3 DFDs. When counting the number of elements, we take into account data stores, process
nodes, and external entities. The results are presented in Table 4.

While both groups showed similar results when analyzing the high level view of the system
through a level 1 DFD, the 2016/2017 student group showed significant improvement when it came
to more detailed analysis. In general, the new generation of students showed better understanding
of their system from the perspective of dataflows.

The main improvement was related to the significantly lower amount of level 3 DFDs. In general,
level 3 DFDs signal a too-detailed model, which rarely adds value to the threat modeling activity.
Indeed, of all level 3 diagrams produced by the 2015/2016 student group, not one was produced
that introduced a new threat to the system, making the diagram useless.

It is the belief of the authors that this improvement is a direct consequence of previous experi-
ence, where we warned the students about excessive level 3 diagrams. Therefore, it is the opinion
of the authors that the new teaching approach had little impact on the positive results.

Next, we analyze the number of identified relevant assets Njssess, which determines the max-
imum number of threats that each student team can identify. The average number of identified
relevant assets for each course instance is presented in Table 5. The results presented in Table 5
show that the 2016/2017 student group identified more assets. We attribute this to our own in-
creased experience, as we recognized that infrastructure assets were completely missed by the
2015/2016 students, and we put more emphasis on this topic in the next instance of the course.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:16 N. Luburi¢ et al.

Table 5. Number of ldentified Relevant Assets

Group 2015/2016 students 2016/2017 students Teaching staff
of identified assets 9.57 12.18 16

Table 6. Number of Identified Threats

Group 2015/2016 students 2016/2017 students
Avg. # of correctly identified threats (TP) 11.36 22.82
Avg. # of incorrectly identified threats (T'N) 5.36 3.18
Avg. # of missed threats (FN) 9.64 4.82
Correctness (precision) 68% 87%
Completeness (recall) 54% 81%

Finally, the results of the threat identification step are presented in Table 6. The results presented
in Table 6 show a significant increase in the quality of the threat identification step between the two
class instances. The differences in correctness/completeness between the instances of 2015/2016
and 2016/2017 were found to be statistically significant (the null hypothesis Hy was rejected for
completeness with the p-value of 1.78 X 10 < 0.05; for correctness, the null hypothesis was re-
jected with the p-value of 2.76 x 10> < 0.05). Thus, we may conclude that the student teams of
the instance 2016/2017 have achieved significantly better correctness/completeness compared to
the student teams of 2015/2016 instance.

Moreover, the authors of Reference [24] measure the correctness and completeness of the threat
identification performed by their students when compared to their own threat identification. They
choose the 80% threshold for both precision and recall as a good reference point for student success.
According to this, we conclude that the 2016/2017 student group has achieved good precision and
recall when it comes to threat identification.

It is the opinion of the authors that these results are a direct consequence of our hybrid flipped
classroom approach. By supplying students with attacks and security controls beforehand, stu-
dents were able to discuss and reason about threats and focus on the cognitive aspect of security
design analysis during the lab exercises.

5.2 Limitations

Several limitations influence the results of the study. First and foremost, both the professor and
the TA have gained certain experience in both teaching and the domain of information security.
We cannot accurately determine the quality of the gained knowledge and skill between the old
and new course. However, we can safely say that our understanding of both information security
and teaching information security has increased in general. As Schoenfield points out [26], threat
modeling is an art form, where experience plays a key role in the quality of the produced models.
Put simply, if we were to apply our old class design to the next generation, then we are confident
that we would get better overall results compared to the 2015/2016 instance of the course, if only
marginally better.

The next limitation to consider is the fact that we have not properly measured the change in the
quality of courses the students attended prior to our course. This is especially important for the
software engineering and network-based systems courses, as we rely on the knowledge students
receive here to reason about security. According to the official study program document, no major
changes have occurred in the curriculum of these courses. To the best of our knowledge, no minor

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

A Framework for Teaching SDA Using Case Studies 21:17

changes in the teaching technique or the subject matter of the relevant courses have taken place.
However, it is difficult to assess if this is actually the case.

A limitation of our framework is its inherent complexity, which requires additional effort to
prepare the course. For the traditional classroom, the teacher prepares course materials that can
then be used in the classroom. Our approach involves the construction of preparatory materials, in
addition to the case studies that are examined in the classroom. Furthermore, an effort is required to
align the preparatory materials, the case studies, and the security analysis method. As with regular
course materials, the preparatory materials need to be periodically updated to stay relevant.

The final limitation is the lack of a larger dataset to analyze. Fourteen threat models were ex-
amined from the 2015/2016 instance of the course, and 17 from the 2016/2017 instance, which is
relatively small scale.

6 CONCLUSIONS

Much effort, time, and money are put into the development and enhancement of products, while
the quality of education is something that is often overlooked. As education can be seen as a branch
of industry that produces people, it is an industry that needs far more attention from the scientific
community, the other branches of industry, and the government.

Secure software development, in the broader sense, encompasses security-related activities that
are practiced throughout the software development lifecycle. When it comes to teaching methods
in the field of secure software development, there are only a handful of initiatives to be found in
the literature, and almost all of them lack any form of evaluation.

We aimed to contribute to the development of a security-aware workforce of software engi-
neers. As part of our course, we designed a novel framework based on the hybrid flipped class-
room and case study analysis to teach students the practice of security design analysis. We evalu-
ated our new approach by comparing the quality of the threat model documents produced by the
2015/2016 student group (who attended traditional labs) with the threat model documents pro-
duced by the 2016/2017 student group (who attended labs generated using our proposed frame-
work). Our results show that the student teams of instance 2016/2017 have achieved better overall
correctness and completeness on the threat identification task compared to the student teams of
instance 2015/2016. The applied statistical test shows that the obtained differences are statistically
significant. Therefore, our results show that a hybrid flipped classroom approach is the preferred
alternative, as opposed to the traditional classroom, when it comes to teaching SDA.

The framework presented in this article can be used to generate a one-day workshop for a
conference, a set of training exercises for employees in the corporate environment, or, as we have
demonstrated, a set of labs for a university course. While the framework is designed for teaching
security design analysis, the target of the SDA can be anything from a web-based system to a
hardware chipset.

We will explore several directions as part of future research. First, we will continue to monitor
the progress of our future students to provide higher confidence in our current results. While
minor improvements are planned for the 2017/2018 instance of the course, we will try to keep the
change to a minimum to reevaluate the teaching approach presented here.

Our main goal is to continue refining our teaching methods and our course design by continu-
ously consulting with information security subject matter experts and researchers of the teaching
method domain. We aim to offer students an information security course that can appeal to future
secure software developers, architects, and security subject matter experts.

Next, we plan to do an in-depth study of recent information security teaching, training, and
awareness initiatives and courses described in several articles [13, 23, 29, 33, 34]. Yuan et al.
performed a review of the current efforts and available resources for teaching secure software

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

21:18 N. Luburi¢ et al.

engineering [33]. They survey a number of secure software development processes, methods, and
tools developed by industry and open source community. The authors create a guidebook that
might prove useful for our research, where they organize the surveyed resources in an attempt
to help educators integrate them into their courses. In Reference [23], a framework for the in-
formation security analysis of case studies is presented. While the approach is primarily aimed at
project managers performing risk analysis, this form of systematic analysis might prove a valuable
addition to our framework, if only to expand the risk analysis step that we cover at a basic level.

REFERENCES

(1]
(2]

(3]
(4]

(7]
(8]

(]

(10]
(11]
[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

Accountability Act. 1996. Health insurance portability and accountability act of 1996. Public Law 104, 191.

Ajit Appari and M. Eric Johnson. 2010. Information security and privacy in healthcare: Current state of research. Int.
J. Internet Enterprise Manage. 6, 4 (2010), 279-314.

Steven F. Burns. 2005. Threat modeling: A process to ensure application security. GIAC Security Essentials Certification
(GSEC) Practical Assignment (2005).

Aparicio Carranza and Casimer DeCusatis. 2015. Hybrid implementation of flipped classroom approach to cyberse-
curity education. Natl. Cybersecur. Inst. §. 2, 3 (2015), 45-54.

Brian Chess and Brad Arkin. 2011. Software security in practice. IEEE Secur. Priv. 9, 2 (2011), 89-92.

Tamara Denning, Adam Lerner, Adam Shostack, and Tadayoshi Kohno. 2013. Control-alt-hack: The design and eval-
uation of a card game for computer security awareness and education. In Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & Communications Security. ACM, 915-928.

National Science Foundation. 2008. Developing case studies for information security education. Retrieved January
14, 2018 from https://www.nsf.gov/awardsearch/showAward? AWD_ID=0737304.

S. Gibbs. 2018. Meltdown and Spectre: ‘worst ever’ CPU bugs affect virtually all computers. The Guardian. Retrieved
January 12, 2018 from https://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-
ever-found-affect-computers-intel-processors-security-flaw.

Saee Hamine, Emily Gerth-Guyette, Dunia Faulx, Beverly B. Green, and Amy Sarah Ginsburg. 2015. Impact of
mHealth chronic disease management on treatment adherence and patient outcomes: A systematic review. J. Med.
Internet Res. 17, 2 (2015).

A.Hern. 2017. WannaCry, Petya, NotPetya: how ransomware hit the big time in 2017. The Guardian.Retrieved January
12, 2018 from https://www.theguardian.com/technology/2017/dec/30/wannacry-petya-notpetya-ransomwar.
Adobe Systems Incorporated. 2010. Adobe Secure Product Lifecycle. Retrieved August 5, 2017 from http://www.
ten-inc.com/presentations/Adobe_privacysecurity.pdf.

Association for Computing Machinery (ACM) Joint Task Force on Computing Curricula and IEEE Computer Society.
2013. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
ACM, New York, NY.

Sul Kassicieh, Valerie Lipinski, and Alessandro F. Seazzu. 2015. Human centric cyber security: What are the new
trends in data protection? In Proceedings of the 2015 Portland International Conference on Management of Engineering
and Technology (PICMET’15). IEEE, 1321-1338.

Tadayoshi Kohno and Brian D. Johnson. 2011. Science fiction prototyping and security education: Cultivating con-
textual and societal thinking in computer security education and beyond. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education. ACM, 9-14.

Daniel E. Krutz, Andrew Meneely, and Samuel A. Malachowsky. 2015. An insider threat activity in a software security
course. In Proceedings of the 2015 IEEE Frontiers in Education Conference (FIE’15). IEEE, 1-6.

Ralph Langner. 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9, 3 (2011), 49-51.

Robert M. Lee, Michael J. Assante, and Tim Conway. 2016. Analysis of the cyber attack on the Ukrainian power
grid. SANS Industrial Control Systems (2016). Retrieved on January 13, 2018 from https://ics.sans.org/media/E-ISAC_
SANS_Ukraine_DUC_5.pdf.

Marcin Lukowiak, Stanistaw Radziszowski, James Vallino, and Christopher Wood. 2014. Cybersecurity education:
Bridging the gap between hardware and software domains. ACM Trans. Comput. Educ. 14, 1 (2014), 2.

Andrew Meneely and Samuel Lucidi. 2013. Vulnerability of the day: Concrete demonstrations for software engi-
neering undergraduates. In Proceedings of the 2013 International Conference on Software Engineering. IEEE Press,
1154-1157.

Andreas L. Opdahl and Guttorm Sindre. 2009. Experimental comparison of attack trees and misuse cases for security
threat identification. Inf. Softw. Technol. 51, 5 (2009), 916—932.

The Open Web Application Security Project. 2017. Application Threat Modeling. Retrieved January 13, 2018 from
https://www.owasp.org/index.php/Application_Threat_Modeling.

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

PLX-HTTPS://www.nsf.gov/awardsearch/showAward?AWD_ID=0737304.
PLX-HTTPS://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-security-flaw.
PLX-HTTPS://www.theguardian.com/technology/2018/jan/04/meltdown-spectre-worst-cpu-bugs-ever-found-affect-computers-intel-processors-security-flaw.
PLX-HTTPS://www.theguardian.com/technology/2017/dec/30/wannacry-petya-notpetya-ransomwar.
http://www.ten-inc.com/presentations/Adobe_privacysecurity.pdf.
http://www.ten-inc.com/presentations/Adobe_privacysecurity.pdf.
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf
PLX-HTTPS://www.owasp.org/index.php/Application_Threat_Modeling.

A Framework for Teaching SDA Using Case Studies 21:19

(31]
(32]
(33]

(34]

James Ransome and Anmol Misra. 2013. Core Software Security: Security at the Source. CRC Press, Boca Raton, FL.
Alexandra Savelieva and Sergey Avdoshin. 2016. Integrating case studies into information security education. In
Emerging Trends in Information Systems. Springer, 99-115.

Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. 2015. A descriptive study of microsoft’s threat modeling tech-
nique. Require. Eng. 20, 2 (2015), 163-180.

Bruce Schneier. 1999. Attack trees. Dr. Dobb’s §. 24, 12 (1999), 21-29.

Brook S. E. Schoenfield. 2015. Securing Systems: Applied Security Architecture and Threat Models. CRC Press, Boca
Raton, FL.

Adam Shostack. 2014. Elevation of privilege: Drawing developers into threat modeling. In 3GSE.

Adam Shostack. 2014. Threat Modeling: Designing for Security. John Wiley & Sons.

Paulina Silva, René Noél, Santiago Matalonga, Hernan Astudillo, Diego Gatica, and Gaston Marquez. 2016. Software
development initiatives to identify and mitigate security threats-two systematic mapping studies. CLEI Electron. .
19, 3 (2016), 5.

Emmanouil G. Spanakis, Silvina Santana, Manolis Tsiknakis, Kostas Marias, Vangelis Sakkalis, Antonio Teixeira, Joris
H. Janssen, Henri de Jong, and Chariklia Tziraki. 2016. Technology-based innovations to foster personalized healthy
lifestyles and well-being: A targeted review. J. Med. Internet Res. 18, 6 (2016).

Sven Tiirpe. 2017. The trouble with security requirements. In Proceedings of the 2017 IEEE 25th International Require-
ments Engineering Conference (RE’17). IEEE, 122-133.

Bill Whyte and John Harrison. 2010. State of practice in secure software: Experts views on best ways ahead. Software
Engineering for Secure Systems: Industrial and Research Perspectives. IGI Global.

Xiaohong Yuan, Li Yang, Bilan Jones, Huiming Yu, and Bei-Tseng Chu. 2016. Secure software engineering education:
Knowledge area, curriculum and resources. J. Cybersecur. Educ. Res. Prac. 2016, 1 (2016), 3.

Chuan Yue. 2016. Teaching computer science with cybersecurity education built-in. In 2016 USENIX Workshop on
Advances in Security Education (ASE’16). USENIX Association, Austin, TX.

Received February 2018; revised October 2018; accepted October 2018

ACM Transactions on Computing Education, Vol. 19, No. 3, Article 21. Publication date: January 2019.

