

https://open.uns.ac.rs

2024-05

Low-cost platform for determination of NTproBNP in saliva using graphene-based aptasensor

Jarić Stefan, Bobrinetskiy Ivan

Jarić, Stefan, and Bobrinetskiy, Ivan. 2024. Low-cost platform for determination of NTproBNP in saliva using graphene-based aptasensor. 23: 305–305. https://open.uns.ac.rs/handle/123456789/32765 (accessed 26 June 2024). https://open.uns.ac.rs/handle/123456789/32765 Downloaded from DSpace-CRIS - University of Novi Sad

CONTINUE

12–15 Mau

BIO-SENSING

8th International Conference on Bio-Sensing Technology

Submission ID

39

Title (required)

Low-cost platform for determination of NTproBNP in saliva using graphene-based aptasensor

Abstract (required)

Detection of trace concentrations of biomarkers can be essential if non-invasive analysis is employed, such as sampling of saliva, urine, or sweat. A significant early-stage heart failure biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP) can be found in saliva in concentrations of a thousand times less than in blood plasma suggesting that non-invasive analysis requires an outstanding low detection limit. In this research, we propose a reduced graphene oxide-based FET device to develop a biosensor using specific anti-NT-proBNP aptamers for the detection of NT-proBNP in saliva. To address the need for low-concentration detection in saliva, we included a correlation analysis of two FET parameters: Dirac point shift and transconductance variation, to provide reliable biosensor performance. Namely, depending on the ionic strength of the solution, we found that the correlation is significant (>0.8) for 0.01X PBS, while it is zero for 0.1X PBS. This can be associated with the long aptamer chain, consisting of 72 bases, that has a significant effect on the doping of the rGO channel and such effect is screened by the ions of higher concentrations (>16 mM). The analysis shows that chemical interaction between the target and receptor is transformed into an electrical signal, which is a result of either direct doping effect or charge mobility change. With such an approach, we observed a broad dynamic range of NT-proBNP concentrations in 0.01X PBS of $10^0 - 10^5$ fg mL⁻¹. Additionally, femtomolar detection of NT-proBNP is achieved in artificial saliva with a limit of detection of 41 fg mL⁻¹.

Author Approval (required)

I confirm that this submission has been approved by all authors. I have informed my coauthors that I am submitting their email address to Elsevier and that Elsevier may contact them to invite them to register for this event.

Copyright (required)

I confirm that I have copyright permission to use any images included within this submission, including the abstract and any subsequent paper, poster or presentation.

Authors and Affiliations (required)

Stefan Jarić (Presenting) sjaric@biosense.rs University of Novi Sad, Biosense institute, Novi Sad, Serbia

Ivan Bobrinetskiy bobrinet@biosense.rs University of Novi Sad, Biosense institute, Novi Sad, Serbia

Categories (required)

Novel detection technologies

Keywords

reduced graphene oxide, GFET, biosensor, cardiac biomarker

Preferred Presentation (required)

Either

Author will attend (required)

I confirm that at least one author will register in full to attend and present the paper at the Conference

Data Protection

Elsevier may send you updates, offers and other information about relevant products, services and events. If you do not wish to receive such messages, please tick this box.

powered by **OXFORD** ABSTRACTS