
University of Novi Sad
DSpace-CRIS Repository https://open.uns.ac.rs

2023-09

Using Sentinel-1 data for soybean
harvest detection in Vojvodina province, Serbia

Marković Miljana, Živaljević Branislav, Mimić Gordan, Woznicki
Sean, Marko Oskar, Lugonja Predrag

Marković, Miljana, Živaljević, Branislav, Mimić, Gordan, Woznicki, Sean, Marko, Oskar, et al.
2023. Using Sentinel-1 data for soybean harvest detection in Vojvodina province, Serbia. :
1–10. doi: 10.1117/12.2679417.
https://open.uns.ac.rs/handle/123456789/32759
Downloaded from DSpace-CRIS - University of Novi Sad



Using Sentinel-1 data for soybean harvest detection in
Vojvodina province, Serbia
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ABSTRACT

Information on crop harvest events has become valuable input for models related to food security and agricultural
management and optimization. Precise large scale harvest detection depends on temporal resolution and satellite
images availability. Synthetic Aperture Radar (SAR) data are more suitable than optical, since the images are
not affected by clouds. This study compares two methods for harvest detection of soybean in Vojvodina province
(Serbia), using the C-band of Sentinel-1. The first method represents a maximum difference of ascending VH
polarization backscatter (σV H) between consecutive dates of observation. The second method uses a Radar Veg-
etation Index (RVI) threshold value of 0.39, optimized to minimize Mean Absolute Error (MAE). The training
data consisted of 50 m point buffers’ mean value with ground-truth harvest dates (n=100) from the 2018 and
2019 growing seasons. The first method showed better performance with Pearson correlation coefficient r=0.85
and MAE=5 days, whereas the calculated metrics for the RVI threshold method were r=0.69 and MAE=8 days.
Therefore, validation was performed only for the method of maximum VH backscatter difference where mean
values of parcels with ground-truth harvest dates for 2020 had generated the validation dataset (n=67). Perfor-
mance metrics (r=0.83 and MAE=3 days) confirmed the suitability for accurate harvest detection. Ultimately,
a soybean harvest map was generated on a parcel level for Vojvodina province.
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1. INTRODUCTION

Soybean (Glycine max L.) is one of the world’s most important agricultural crops whose grain is used as a
source of edible oil (18-24%) and protein (35-50%) in human and livestock nutrition and for industrial purposes.1

Since the beginning of the 1970s, when the Landsat program was launched, the application of remote sensing in
agriculture has advanced significantly and has become an important tool for planning agricultural production,
with the aim of increasing yields while reducing investment costs.2 Remotely sensed data can provide accurate and
timely information about the development of vegetation and the phenological stage of a certain crop.3 Further,
information regarding when and where crops are harvested can provide valuable insight into the amount of food
that will be available on the market.

In the optimization of crop harvesting practices, remote sensing is a useful method since satellite images provide
a large spatial coverage in short time intervals of days to weeks. With the launch of the Sentinel satellites
(Sentinel-1 and Sentinel-2) in 2016, the ability to detect the optimal harvest date has increased significantly.4

Optical satellite images can provide good information on crop growth and development, but their analysis is lim-
ited to cloud-free conditions, which significantly affects information availability, spatial and temporal resolution.5

Compared to optical imaging, SAR (Synthetic Aperture Radar) has certain characteristics that can be significant
for crop condition monitoring. Firstly, the microwave frequencies it uses can penetrate through clouds, which
allows uninterrupted observations at certain time intervals.6 In addition, SAR is sensitive to biomass geometry,
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thus can potentially detect changes in crop height before and after harvest.7 Scenes can include one or two
out of four polarization bands based on instrument settings: single-band VV or HH, and dual-band VV+VH
or HH+HV, where each band corresponds to specific polarizations such as vertical or horizontal transmit and
receive.6

Both sensors are found to be sensitive to crop harvest events, albeit in different ways. Optical data is more
sensitive to the change of the biophysical status of the crop on the ground, while SAR can provide insights about
the crops’ structural change. Some studies point out that the coherence and the VV/VH backscatter ratio of
Sentinel-1 can be particularly sensitive to crop harvest events.8–10 In this case study, remote sensing techniques
were used for the detection of soybean harvest dates over large areas as well as on the parcel level. In the last
couple of years several research studies were conducted on this particular subject.

Different machine learning techniques gave results using Sentinel-1 imagery and applying interferometric coher-
ence with a final mean absolute error of 6 days (MAE = 6).11 The most frequently analyzed crops are soybeans,
maize and sunflower, but also sugarcane in parts of Southeast Asia and Australia, for which there are tested
methods combining Sentinel-1 and Sentinel-2 images, with an achieved precision of 4 days.12,13 However, this
field of research is still in its beginning stages and there is much progress to be done in perspective.

With each new Sentinel-1 image, these maps could potentially be used for monitoring the occurrence and fre-
quency of allergic reactions to ragweed in different areas of Vojvodina Province, since this weed often grows
on soybean fields.14 By harvesting the entire field, the dispersal of allergenic particles is greater than usual,
therefore the maps of recently harvested soybean fields are of great interest for future analysis and precautionary
measures in Vojvodina Province.15

The aim of this research was to detect soybean harvest dates, as one of the most cultivated agricultural crops in
the Vojvodina Province, in the northern part of Serbia. This study compares two methods for harvest detection of
soybean in Vojvodina province (Serbia), using the C-band of Sentinel-1. The first method uses a Radar Vegetation
Index (RVI) threshold approach, while the second one uses a maximum difference of ascending VH polarization
backscatter (σV H) between consecutive dates of observation. The time series of Sentinel-1 images was analyzed
to observe the behavioral rules of soybean crop phenology during the period of vegetative maturation for three
seasons (2018-2020). The highest precision was achieved by observing the maximum difference of ascending VH
polarization of consecutive Sentinel-1 images.

2. MATERIALS AND METHODS

2.1 Study area

The Vojvodina Province is the northern part of the Republic of Serbia (Figure 1), with a total area of 2.150.000
ha, and is located on the southern edge of the Pannonian Plain.16 The area is characterized by a moderately
warm climate, with hot summers and cold winters. Most precipitation occurs in the form of rain during the
spring-summer transition period (May-June).17 The average annual temperature is 11.1°C, while the average
amount of precipitation is 606 mm.18 Vojvodina Province is characterized by predominantly agricultural land
(83%), most of which is cropland (77%), with intensive agriculture19 and soybean as one of the most cultivated
crops, according to the Statistical Office of the Republic of Serbia.20–22
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Figure 1. Spatial distribution of points in study area (A) and the location of the study area in Southeastern Europe (B)

2.2 Data

The data needed for this research was received from the agricultural company, and was obtained as points
(latitude and longitude) representing one parcel. Therefore, each point represents one pixel and holds information
on location, together with the date of sowing and harvesting for a period of 3 years, i.e. from 2018 to 2020.
Figure 1 shows the locations of the points during each year in the study area. To provide relevant representations
of each parcel, buffers of 50 meters were created around each point and used in further analysis. However, after
visual inspection of Sentinel-2 RGB images, some of the buffers were overlapping boundaries to neighboring
crops due to small parcels or the location of points near the border. Those buffers were excluded from further
analysis, resulting in the number of final buffers for 2018 being 83, 66 in 2019, and 88 in 2020.

C-band SAR data were extracted from the Google Earth Engine platform, which contains Sentinel-1 Ground
Range Detected (GRD) scenes, calibrated and ortho-corrected images by using the Sentinel-1 Toolbox. Prior
to downloading the data, Focal Mean23 speckle filter was applied to limit the noise within a 30-meter radius
circle. The VV and VH polarizations from both ascending and descending orbit were acquired for each buffer and
backscatter coefficients (σV V , σV H) time-series were generated for each year. The time series was established
using the first and final harvest dates obtained from the initial ground truth data, covering 20th August to 20th
October. Although the temporal resolution is 6 days, for some locations there is information every 1-3 days due
to overlapping scenes.

Two methods were applied:

1. Radar Vegetation Index - RVI Threshold Method

2. Maximum difference of backscatter polarization - Maximum Difference Method

For both methods data from 2018 and 2019 were used for training and 2020 for testing. The performances
of the methods were assessed using the following metrics: Pearson’s correlation coefficient (r), coefficient of
determination (R2), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).
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2.3 Radar Vegetation Index

The Radar Vegetation Index (RVI) is a vegetation index considered suitable for monitoring vegetation by utilizing
information obtained from radar signals.24 RVI value ranges between 0 and 1 and is a measure of volume
scattering, mathematically represented with Equation 1.

RV I =
8σHV

σHH + σVV + 2σHV
, (1)

Where σHH , σHV and σV V represent the measured linear backscattering intensities. Due to the absence of HH
and HV backscattering coefficients in the dataset, we substituted them with VV and VH backscatter coefficients,
following the approach suggested by Nasirzadehdizaji25 and Charbonneau.26 Thus, the final formulation of RVI
is given in Equation 2:

RV I =
4σVH

σVV + σVH
, (2)

Given its frequent utilization as a vegetation index derived from Synthetic Aperture Radar (SAR) data for
vegetation growth27–30 and its correlation with the Normalized Difference Vegetation Index (NDVI),31,32 we
investigated its utility for harvest detection. The range of RVI values from 0.3 to 0.45 was tested to determine
the optimal threshold for identifying the harvesting by minimizing MAE in days. Among the evaluated RVI
values, 0.39 emerged as the threshold that resulted in the lowest MAE and was selected as the final threshold for
harvest determination. An example of an RVI time series for a specific buffer point, along with its corresponding
harvest date, is illustrated in Figure 2.

Figure 2. An example of a Radar Vegetation Index (RVI) time series for one point for the period August-October

2.4 Maximum difference

Analyzing the time series of ascending and descending VH and VV polarizations, a significant drop of signal
occurs immediately after harvesting for ascending σV H polarization. For that purpose, the difference between
consecutive dates of observation was calculated. Considering that backscatter polarization is in negative decibels
and that time series was differentiated, the minimum negative value was an indicator of harvesting. In other
words, it represented the maximum negative difference between the dates. Further in text, the term ’maximum
difference’ will be used for simplicity, referring to the ’maximum negative difference’. Due to the possibility of
multiple high signal oscillations, we analyzed the three largest signal drops (Figure 3) as potential harvesting
events, while defining the value that occurred first in time as the actual harvest. The harvest date was determined
as the mean date between two dates corresponding to the maximum difference.
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Figure 3. An example of ascending VH polarization time series for one point for the period August-October

3. RESULTS AND DISCUSSION

3.1 RVI Threshold Method

The RVI Threshold Method was applied to the data from the years 2018 and 2019, identifying the first RVI value
below 0.39 as the indicator for the onset of harvest period. Pearson’s r between the ground truth data and the
predicted values was 0.69, indicating a moderate positive relationship. Furthermore, the algorithm’s performance
was assessed using the MAE and RMSE, which were found to be 8 and 11 days (Figure 4), respectively, signifying
the level of accuracy and prediction errors in the model.

Figure 4. Scatter plot of training data using the RVI Threshold Method

3.2 Maximum Difference Method

The Maximum Difference Method encompassed a training phase, during which correlations were analyzed using
data from the years 2018 and 2019. Three distinct cases were analyzed, namely, the one (Figure 3, (b)), two
(Figure 3, (b and c)) and three (Figure 3, (a, b and c)) largest signal drops. For the scenarios involving the
two and three signal drops, the algorithm was designed to prioritize the value that occurred earliest in time and
declare it as the predicted harvest date. Pearson’s correlations were 0.91, 0.85, and 0.66, respectively (Figure 5).
As well, MAE values were 3, 5, and 8 days, while RMSE values were 5, 7, and 11 days for the same datasets.
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These results indicate the most effectiveness of the one and two signal drops, while the analysis of three drops
was excluded from the further steps.

Figure 5. Scatter plot of training data using Maximum Difference Method with (A) one, (B) two and (c) three signal
drops

Next step was to test the results using data from the year 2020. The testing process involved generating a parcel-
level map of predicted harvest days. Firstly, a soybean parcel-level map was created through the utilization of
cadastral parcels and soybean classification for the corresponding year. A classification map was provided by
BioSense Institute which classifies main crops every year using the Random Forest algorithm with Sentinel-2 and
ground truth data.33,34 After creating a soybean parcel-level map, the σV H backscatter time-series polarization
was extracted for each parcel and the same algorithm was used as in the case of the buffer training data. Identified
harvest days were assigned to corresponding parcels, creating a harvest map (Figure 7). The testing procedure
showed significantly better metrics when using the two signal drops (Figure 6).
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Figure 6. Scatter plot of testing data using Maximum Difference Method with (A) one, (B) two signal drops

Pearson’s r of 0.83 and MAE of 3 days indicate very good accuracy, therefore, this method was selected as the
final approach for detecting harvest dates, enabling accurate timely detection. Figure 7 illustrates the harvest
map for 2020 generated by applying this method.

Figure 7. Soybean harvest map for 2020 created by Maximum Difference Method with two signal drops
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3.3 Discussion

According to our knowledge, the analysis of RVI behavior has not been the subject of previous studies for harvest
detection, despite being researched in various crop monitoring and classification studies. Therefore, this paper
presents a novel examination of RVI with a revealed threshold of 0.39 and achieved 8 days precision for soybean
harvest detection.

However, regarding the Maximum Difference Method, Stasolla and Neyt12 came to similar conclusions for sugar-
cane by analyzing the VH polarization and observing a significant drop in signal response after harvest. Compared
to their 4-day detection accuracy results, our research showed that for soybean, it is possible to accomplish 3-day
precision with a modified methodology of considering the two largest drops in σV H and using only the ascending
orbit.

Kavats35 and Amherdt11 also detected the soybean harvest using radar images. However, they used VV polariza-
tion and interferometric coherences, achieving a precision of 6 days. The precision of 3 days for soybean harvest
detection was also achieved by Shendryk,13 who combined the threshold method with the use of Sentinel-2 data
and climate parameters in the final classification. This finding further validates the usefulness of our proposed
method, which offers a significantly simpler and faster algorithm with the same precision.

The final maps, created by the proposed method, can only be generated at the end of the entire harvest season.
These maps find application in yield prediction, optimization, and plot management logistics. However, future
advancements will involve the development of real-time harvest identification methods, during the harvest season.
Additionally, efforts will be made to extend these methods to other crops as well.

4. CONCLUSIONS

In this study, we compared two methods for detecting soybean harvest. Firstly, we investigated the behavior
of the Radar Vegetation Index for harvest detection and focused on defining a suitable threshold and possible
precision.

Secondly, we explored the second approach based on the observation of VH polarization values. We found that
the ascending VH polarization values significantly decreased after the harvest event. Utilizing this information,
we identified two distinct drops and, based on our analysis, declared the earliest drop as the soybean harvest
event. This method is demonstrated as a reliable one for soybean harvest detection with accuracy of ±3 days.
The outcomes of this research highlighted the applicability and reliability of the Maximum Difference Method
to detect soybean harvest effectively.

This study demonstrates the potential of remote sensing techniques, especially SAR data, for agricultural pur-
poses. As well, it contributes valuable insights into soybean harvest detection, clearing the path for improving
resource management and agricultural optimization, as the demand for sustainable and efficient agriculture
continues to grow.
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