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Abstract: Integration of machine learning (ML) models into real-world applications such as agriculture, demands explanations of 

the inner workings of such models. As ML models evolve and become more sophisticated, it becomes more challenging for humans 

to comprehend their decision-making processes. This lack of transparency presents a significant barrier to the widespread adoption 

of ML-driven models, especially in precision agriculture where the stakes are high. One of the applications in precision agriculture 

is the creation of ML-driven models for detecting irrigated fields. To provide explanations for the ML classifiers for detecting 

irrigated fields based on satellite imagery, we employ explainable AI (xAI), a paradigm that seeks to provide comprehension of the 

decision-making process hidden behind predictions given by the ML models. By using the SHAP method, we seek to unravel how 

the model decisions differ among several crops of interest (maize, soybean, and sugar beet) for the classification task of detecting 

irrigated fields. On the more fine-grained level, we seek to analyse the most decisive factors among fields covered with the same 

crop. Results indicate that the main factors (vegetation indices for different days during the season) that guide the decision of ML 

models differ among different crops. More importantly, the results show that some parts of the decision-making process of the 

ML models deviate from human reasoning. More sensible classification of irrigated fields is achieved for sugar beet, than in cases 

for soybean and maize. Analysis of the explanations why particular fields are classified as irrigated or not, confirmed conclusions 

obtained on the crop-specific explanations. Our results show that having syntheses of xAI and ML classification models for 

irrigated fields is a crucial component for building trust, mitigating biases, and enhancing the robustness of these models.  
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1. Motivation 
 

The ML classification models for detecting irrigated fields become more complex with the 

advancements in AI technology. Adopting the xAI methods can help in unraveling the decision-making 

processes of such models. By making the process transparent and understandable, the xAI methods can 

ensure unbiased and fair outcomes in the context of detecting irrigated fields. Regardless of who the end- 

users of such models are, they all need to have confidence in the decisions made by ML-driven models. In 

applications such as detecting irrigated fields, where the models can have indirect or direct influence on an 

end-user, there is a clear necessity for providing understandable explanations that all end-users can 

comprehend. On the one side, the domain experts by using the xAI tools can discover whether the model 

may be misled by some erroneous factors, enabling refinement and optimization of the ML algorithm 

thereby enhancing its robustness and performance. On the other hand, for farmers the integration of the xAI 

in the ML-driven systems can establish trust and therefore lead to broader and quicker adoption of the AI- 

based systems. In other words, the xAI tools can ensure that all stakeholders can see the full potential of 

these models. 

Agricultural landscapes are widely diverse in terms of different crop types, soil types, and weather 

conditions. Therefore, it is challenging to create unbiased and robust ML-driven models for the 

classification of irrigated fields. Our research aims to demonstrate how the xAI methods can provide 

insights into the adaptability of the ML models to the mentioned variations, thereby enabling the 

opportunity for enhancing model's robustness and performance for particular crop depending on the soil 

type. The explanations obtained for different crops can show how the xAI can help in understanding main 

factors that guide the decision of complex ML models. It is also essential to ensure that these models are 

not biased towards influential factors characterized by large fields. Having robust and accurate ML models 
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for classification of both large and small irrigated fields would lead to the establishment of 

trustworthiness among farmers, regardless of their field’s sizes. 

Another motivation for integrating xAI into ML models for irrigation detection includes the understanding 

of the decision-making process behind classifying fields as irrigated within fields covered with the same 

crop. Having the xAI that is providing clear insights into why each field is classified as irrigated or non-

irrigated, empowers stakeholders to make informed decisions about water management, enhancing the 

overall efficiency of irrigation systems and water consumption. The field-specific insights obtained by 

integrating xAI are important for other decisions that can impact yield and water resource utilization. This 

aspect is significant as agricultural practices are often subject to regulations governing water usage and 

environmental impact and having the xAI integrated in the ML-driven irrigation detection system, can 

facilitate compliance with regulations. 

The synergy of SHAP and ML classifiers trained on satellite data is used in studies [1, 2] in a multi-class 

framework to enhance land cover mapping using ML-driven models. According to our knowledge, this is 

the first study that attempts to integrate xAI, specifically the SHAP method [3] with ML models based on 

satellite data for irrigation detection. 

 
2. Research questions 

 
In the context of irrigated field detection, the motivation for leveraging xAI into the ML-driven 

classification model is manifold. In our work, we seek to unravel both crop-specific and field-specified 

explanations for the ML classification model of irrigated fields. 

Firstly, on the coarse-grained level are obtained the crop-specific explanations for ML models trained on 

irrigated and non-irrigated fields. Having the explanations obtained for different crop types can help us to 

comprehend the main factors that guide the decision of the ML model for different crops. By having 

domain experts included in analysis of the obtained results, we are fostering confidence in the accuracy 

and reliability of developed irrigated field detection models. Furthermore, by providing a crop-specific 

understanding of the model reasoning, the xAI provides valuable insights for refining and enhancing the 

ML model's robustness. 

Another aspect of integrating the xAI into ML models for irrigation detection includes the understanding 

of the decision-making process behind classifying fields as irrigated within fields with the same crop. 

Therefore, on a more fine-grained level, SHAP is used to unravel the most decisive factors among fields 

covered with the same crop. Having explanations per field enables us to identify errors in the labeling data 

process, thereby allowing us to correct data and create a solid foundation for the training of ML models. 

 

3. Methodology 
 

In previous work [4, 5] the ML classification models are designed for the identification of irrigated 

fields by using Sentinel-2 satellite imagery data. The models are created for three different crops of 

interest: maize, soybean, and sugar beet in the Vojvodina region (Serbia). From the ML classification task 

perspective, the training phase of the ML models was challenging due to the uneven number of irrigated 

and non-irrigated fields. For tackling the imbalanced distribution of the target variable, are used ML models 

capable of handling such data. Namely, the Random Forest (RF) model is used with incorporated class 

weights into the learning process of each base decision tree model. In general, a single tree-model is 

considered as interpretable by its nature due to the possibility of nice tree structure visualization. However, 
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having an ensemble model composed of many trees hinders the model’s interpretability. The xAI methods 

can provide explanations of model decisions with a certain level of detail, making ensemble systems more 

understandable and transparent. In our work a post-hoc approach is used, where the explanations are 

provided after the ML models are trained. More precisely, the SHAP method [3] is applied for the RF model 

among different crops, thereby creating local explanations at the sample (pixel) level. To provide crop- 

specific explanations, the local explanations are aggregated per crop, while for field-specific explanations, 

field-based aggregation is used. The crop-specific and field-specific explanations are calculated as the mean 

absolute value for each feature on the pixels belonging to the same crop and field, respectively. 

4. Discussion 
 

Today successful integration of ML models into real-world applications requires the inclusion of 

the xAI methods to provide an understanding into the decision-making process. In the context of ML 

detection of irrigated fields, the inclusion becomes a prerequisite for the responsible, ethical, and effective 

implementation of precision agriculture. By providing explanations using SHAP method on the ML models 

for detecting irrigated fields, our work demonstrates that xAI methods can serve as a valuable tool, for 

understandable explanations of the driving forces of the model's decisions that are crop-specific and field- 

specific. Comprehending the most influential factors that drive decisions of the model on both levels 

enhances the transparency of the model. The results obtained show that for soybean and maize, the decision- 

making process of the ML models deviates from human reasoning indicating where further refinement of 

the ML model is needed. In contrast, a more reasonable classification of irrigated fields is achieved for 

sugar beet. Field-specific explanations revealed errors in the labeling data process, thereby allowing data 

corrections and the creation of more valid data for the training of ML models. Our study shows how xAI 

can help us validate the model's predictions and obtain valuable insights for further refinement of the ML 

models in order to provide more robust and accurate models for diverse agricultural landscapes. Besides, 

the xAI ensures that stakeholders can trust the model's decisions which is particularly important in 

agriculture where further human decisions can impact crop yield and water resource utilization. Therefore, 

integration of the xAI can be helpful for the widespread adoption of technology in precision agriculture. 
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