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A B S T R A C T

The functional design of a decision support system for a state-of-the-art vehicle sharing system
(VSS) inevitably includes the selection or definition of methodologies for planning and managing
the observed VSS. In this paper, our focus is on an innovative VSS that utilizes light electric
vehicles. Our goal is to specify the functions of a comprehensive decision making solution for
such a VSS through a qualitative and systematic literature and system analysis. To achieve
this goal, we rely on the holistic VSS management framework developed in our previous
research. As a result of our study, we identify possible solution methodologies or algorithms for
implementing functions of the designed decision making solution, and propose the necessary
adjustments for their application in the case of light electric vehicles, or note any research gap.
With these findings, we provide justified guidance to practitioners in creating these solutions,
with the aim of reducing development time.

. Introduction

Compared to the classical vehicle rental systems, vehicle sharing systems (VSSs) offer registered users the opportunity to rent
ehicles for a short period of time, without explicit contract signing for each particular rental. This type of shared mobility is gaining
opularity due to both financial and environmental benefits. However, they face many challenges, such as inventory management
f vehicles and parking spots, system imbalance, determining pricing strategies, and demand forecasting. Currently, the majority of
hese services represent car sharing systems (CSSs), electric CSSs (eCSSs), and bike sharing systems (BSSs). More recently, moped
haring systems (MSSs) and kick scooter sharing systems (SSSs) have started to appear. Although vehicle types in the listed systems
iffer, the management and optimization challenges reappear in the same or similar forms, as we outline in Ataç et al. (2021).

In this paper, we concentrate on a new type of VSS that utilizes light electric vehicles (LEVs). These vehicles are larger than
ikes but smaller than cars, and can even be driven in bike lanes (Fig. 1). They have space for a single person, i.e., the driver,
nd some luggage. Additionally, they offer a comfortable ride in rain or bad weather, since they possess a closed or covered cabin.
or example, Swiss company ENUU operated such vehicles in several Swiss cities, as well as in Berlin, Germany, and Getaround
2019) offered a similar service in Rotterdam, The Netherlands. However, both companies discontinued this service in 2022 and
e have not managed to obtain any further information about the reasons for such a decision. One reasonable assumption would
e operational difficulties, which would make the presented study a valuable contribution to preventing such negative outcomes in
uture endeavours of this kind.
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Fig. 1. Light electric vehicle parked in the bike parking.

The purpose of this study is to identify planning and management challenges in an LEV sharing system (LEVSS), existing
algorithms and solution methodologies which can be utilized for their solution, the necessary adaptations of the identified algorithms
and methodologies for their utilization for LEVSSs, and methodological gaps that need to be overcome. This process is the main task
of a functional design for any decision making solution. To perform this task in the context of an LEVSS, we rely on the general
framework for management and optimization of the VSS operations and the comprehensive literature review, both presented in Ataç
et al. (2021). By using the framework, one should be guided what planning and management challenges to expect and how to solve
them. Additionally, we can determine the areas where research efforts should be focused in order to create a comprehensive decision
making solution for an LEVSS.

The general framework is aimed to be applicable for any kind of VSS and allows detailed planning for a newly introduced VSS,
which can use conventional or innovative vehicles. Hence, this paper presents also a conceptual and methodological application
of the developed framework on an LEVSS. Nevertheless, the presented functional design approach is invariant towards the type of
vehicle a VSS is using. Therefore, we argue that such an approach can also be utilized for the future types of VSSs. While applying
the framework to an LEVSS, we have also identified an additional management task that was previously missing in the framework.
It is about determining whether the system should impose obligatory parking reservation on its users and the reservation kind. The
framework is now extended to accommodate this task, as presented in Section 2.3.

The specific features of the analyzed LEVs and the strong environmental and commercial potential of an LEVSS necessitate and
justify a devoted analysis focusing on the optimization and management of a VSS using LEVs. Although there are similar studies
conducted for electric vehicles (EVs) in general, we have not found any that corresponds entirely to the distinguishing characteristics
of LEVs. For instance, the authors in Shen et al. (2019) analyze VSSs with EVs in general. However, they do not observe certain
important aspects of an LEVSS: LEVs do not require any charging infrastructure, they can be driven on bicycle lanes, and the car
pooling cannot be used to rebalance the fleet. On the other hand, Wu (2022) focuses on a novel model of EV sharing system
maintenance based on the battery swapping stations. The LEVs in our work do not require such stations either as the batteries are
replaced by the staff on the spot, possibly before or after performing a rebalancing operation. Similarly, Li and Jenn (2022) and Tang
et al. (2022) deal with the optimization of EV charging infrastructure and activities. Additionally, the interaction between EVs and
regular or micro energy grids has been a very active research topic recently, e.g., Barone et al. (2022), Singh and Dubey (2022),
Vujasinović et al. (2022) and Li et al. (2022). However, these topics are not of interest for our study.

The proposed study aims to fill the revealed gap and make a valuable contribution to the current practices in management
and decision making related to the LEVSSs. By having our study in hands, the designers and practitioners, i.e., business analysts,
product managers, software architects, software engineers, etc., will have a curated selection of existing solution methodologies
and recommendations for their application in LEVSSs. They will also be informed about the methodological gaps that need to be
addressed in order to create a comprehensive decision making solution for LEVSSs. Therefore, the intention of this paper is to be a
steering tool that guides practitioners’ decisions when building a decision support system (DSS) for an LEVSS, ultimately enhancing
efficiency and improving the overall development process.

The structure of the paper is as follows: The functional design of an LEVSS decision making solution is described in Section 2.
In Section 3, we identify all works, to the best of our knowledge, which are applicable to the identified planning and management
tasks of the envisioned decision making solution for LEVSSs. Finally, we provide final conclusions of our analysis in Section 4.
2
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2. The design of a decision making solution for an LEVSS

In addition to the distinctions mentioned in the introduction, the LEVs are set apart from the other types of EVs by the fact
hat they are not charged at stations. Instead, the staff replaces the battery according to a selected strategy, e.g., when the battery
alls below a certain charging level. Also, since LEVs are quite larger than bikes, it is not suitable to rebalance the system using
rucks. Such distinctions between LEVs and other vehicle types necessitate certain adaptations of existing methodologies for their
pplication to an LEVSS. Finally, we aim to apply our framework to a free-floating VSS, since this type of VSSs are becoming
ncreasingly popular due to user convenience, e.g., Jacobs (2016) and Mobility (2019).

The required planning and management tasks for the designed decision making solution for an LEVSS are identified from the
eneral framework (Ataç et al., 2021). Therefore, for the sake of paper self-containment, we repeat brief descriptions of the tasks,
sed terminology and framework notions in Section 2.1. In that way, we are able to present the design in the light of the previously
eveloped framework. For a thorough description of the framework and VSS related notions, we refer the reader to the original
ork (Ataç et al., 2021).

The subsequent subsections, namely, 2.2, 2.3, and 2.4, provide the details about the planning and management tasks, along
ith their possible solutions, associated with each of the decision levels, respectively. In these three subsections, we analyze the
pplicable methodologies and offer discussion and recommendations for their application to an LEVSS, with respect to the specific
eatures of LEVs and targeted sharing system.

.1. Terminology and the framework

The framework is organized according to three dimensions: decision levels, actors, and layers. This structure provides an
rganized view of all VSS planning and management components, i.e., data obtained, models developed, and actions taken in
eneral. The actions also represent the challenges encountered in VSS planning and management, as well as the required tasks for
he corresponding DSS. Each component is placed within one framework’s module, which represents an intersection of framework
imensions. The proposed framework is illustrated in Fig. 2, highlighting the dimensions, modules and their mutual relationships.
he components are presented in the following subsections.

The first dimension, i.e., decision levels, captures the common planning time frames: strategic, tactical, and operational. The
econd dimension, i.e., actors, associates each component with either the supply or demand side of a VSS. Lastly, the third dimension,
.e., layers, represents the three layers of any decision making task: data, models, and actions. Modules at the data layer are not
plit among actors since the majority of the data is used by both sides.

We define two types of relations between the modules: intra-level interaction indicated by white arrows, and inter-level
nteraction represented by dashed arrows. The intra-level interaction appears as two-ways, i.e., the exchange of information between
odels of supply and demand actors, and one-way, the natural information flow from data, via models, to actions. On the other
and, the inter-level interaction passes the outputs of a higher decision level to the models layer of a lower level as inputs. With
hat, we present the influence of the higher level decisions to the possible choices at the lower level.

In the following subsections, we deep dive into the specifics of each decision level within the framework and present the
espective tasks of a designed LEVSS management system, their potential solutions, and anticipated adjustments and modifications.

.2. Strategic level

The strategic level encompasses various management and optimization tasks on both the supply and demand side of an
EVSS. They are depicted in the actions layer of the framework’s strategic decision level (Fig. 3). These tasks can be tackled
y the mathematical models and solution methodologies, presented further. The supply and demand models can also be utilized
imultaneously and in conjunction. With that, the supply and demand actors act together and search for a mutual optimum.

.2.1. Demand
Demand models primarily consist of mode- and destination-choice forecasting models, which are utilized to derive user

egmentation, allocate advertisement budgets, and determine the market placement of the system. The user segmentation helps
ecision makers to better learn the users of the system. By determining the optimal budget for advertisement and market placement,
he company enhances its visibility among potential users and targets the most promising user group, respectively.

There are many existing methodologies for mode choice estimation. In Campbell et al. (2016), the authors use a multinomial
ogit model to estimate the adoption of a new shared vehicle type. The data for the model parameters estimation is gathered through
opular surveys. The surveys include both socio-economic inquiries as well as stated preferences towards transportation modes. An
xtension of this approach can be found in Narayanan and Antoniou (2023). Here, the authors create a generalized multinomial logit
odel which simultaneously accounts for multiple vehicle and ride sharing services, together with the conventional transportation
odes. The methodologies used in Campbell et al. (2016) and Narayanan and Antoniou (2023) represent general discrete choice

nalysis. Therefore, they can be utilized for the estimation of adoption of new LEVSSs, even in the presence of other shared mobility
ervices.

Similarly, Aguilera-García et al. (2020) develop a generalized ordered logit model to investigate the factors influencing the
doption and frequency of use of shared moped scooters for daily urban mobility. The authors employ socio-economic, travel-
elated, and personal-opinion data collected through a survey to build this model. It is important to notice that the independent
3

odel variables do not depend on the observed shared vehicle type, which makes the approach applicable to an LEVSS, too.
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Fig. 3. Strategic decision level of the framework.

In addition to mode choice estimation, the user reactions to the introduction of a novel vehicle type or planned operation modes
can be anticipated as suggested in Wu et al. (2019). For this purpose, a stated preference survey has been created wherein users
are asked to choose between regular operation of a VSS, VSSs with additionally introduced rules, and conventional transportation
means. By tailoring another survey which would include LEVs, the same models can be utilized for perceiving user reactions to the
LEVSS introduction. The results can be used to design advertisements and determine the appropriate market share before introducing
the new service and features.

Another approach for the analysis of demand market represents a user segmentation, which can be performed as demonstrated
in Degele et al. (2018). In order to create segments, the authors combine hierarchical and partitioning clustering over users’
demographic and trip data. The obtained clusters are further utilized to identify the characteristics of the obtained user segments
and tailor the marketing strategies and offers accordingly. Although this analysis is applied to an electric scooter sharing system
in Degele et al. (2018), the used data is independent of the used vehicle type in the sharing system. Therefore, the same approach
can be applied to the case of an LEVSS.

2.2.2. Supply
The strategic level utilizes high-level models for optimizing the network and bringing the corresponding decisions.
The optimal location and size of parking facilities are crucial decisions to prevent both over- and understocking of the vehicles.

Jointly, these decisions can be considered to be a part of the network design. They are made at the beginning of the system
installment in the case of station-based configurations. The situation does not change for the free-floating configuration since each
parking spot can be considered as a station with a capacity for only one vehicle. In this layer, the system simulation component
assists operators in evaluating the system’s state and taking appropriate actions.

The choice of rebalancing method is strongly related to the type of vehicles used in the system. For instance, the BSSs usually
use big trucks to rebalance the vehicles, whereas in a CSS, the vehicles are generally rebalanced by the dedicated staff members.
Moreover, user-based strategies can be used to improve the balance in the system or a combination of staff-based and user-based
approaches might be applied.

Finally, the level of service (LoS) that the operator wants to provide to the users should be determined at this decision level.
E.g., the operator may prioritize user satisfaction by increasing the number of vehicles and/or parking spots in the service area.
On the other hand, if the operator is more capital-oriented, investment in the physical components of the system (vehicles, parking
spot, etc.) is more crucial than the LoS, which makes it a secondary objective for the operator.

We argue that the network design algorithms for LEVs can be borrowed from other types of VSSs. For example, the authors
in Boyacı et al. (2015) present an optimization problem and solution methodology for determining the optimal number and location
of required stations, while taking into account the dynamic rebalancing of vehicles. In addition to that, the model is multi-objective,
which allows the operator to examine the trade-off between the operator’s profit and the offered LoS. As the problem is solved at the
strategic level, the presented model requires service operating prices and aggregated demand data to be solved, without considering
the specifics of utilized vehicles nor the details about rebalancing operations. Furthermore, the authors use origin and destination
locations of the real demand to solve a maximal set covering problem and identify the candidate station locations for the aggregate
model. We can then apply the inverse operation, as done in Weikl and Bogenberger (2015), and create a Voronoi tessellation from
the obtained station locations. Then, each Voronoi cell becomes a future LEV parking zone, while the station capacity represents
the needed number of parking slots within the zone. Therefore, the approach from Boyacı et al. (2015) can be used for designing
the network of free-floating LEVSS, too, with appropriate adjustments of problem parameters.
5
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Fig. 4. Tactical decision level of the framework.

2.3. Tactical level

The outputs of the actions layer of the strategic level serve as inputs to the models layer of the corresponding actor, at this decision
level. This relationship is denoted by one-way dashed arrows in Fig. 2. Further, we discuss the LEVSS management challenges and
potential solution methodologies at the tactical level, first for the demand actor and then for the supply actor. These challenges are
presented as the actions in the framework’s tactical decision level, shown in Fig. 4.

2.3.1. Demand
Deciding the pricing strategy, i.e., to be fixed or dynamic, is an important component of this decision level. In the case of fixed

pricing, the pricing values are also determined at this level. The offers and campaigns that will be presented to users are also
determined within this decision level. The outcomes from the strategic level, such as the budget and target audience, can be used
as attributes for the mid-term demand forecasting. The actions taken at this level, i.e., pricing strategy and campaigns, are passed
on to the operational level.

The approach for determining pricing strategy, presented in Hansen and Pantuso (2018), does not contain any features that
limit its application to CSSs only. Therefore, we can apply it to determine dynamic prices in an LEVSS as well. Similarly, midterm
demand forecasting can be performed with the predictive models already used for the VSSs using other vehicle types, e.g., Faghih-
Imani et al. (2017). Here, the authors build models that predict the need for rebalancing at each station and estimate the required
number of vehicles. The models depend on variables describing the transport infrastructure, station locations, socio-demographic
characteristics of the neighborhood, and day and time of the prediction. Since none of these variables depend on the specific vehicle
type, the models can be applied to an LEVSS as well. Certainly, the models must be fine-tuned for the specific user share of the
LEVSS.

The mode-choice ratio for an LEVSS can also be estimated using the approach presented in Li et al. (2018). Here, the authors
model disutility functions for each transport mode, considering the characteristic multi-modal and multi-activity trips occurring in
every day life. They employ a dynamic user equilibrium algorithm to estimate the mode of transport that will be chosen. To model
the disutility function for a shared vehicle system, the authors use information on fleet size, parking locations, service fees, and
estimated demand. Therefore, their approach can be used to reach the desired mode-choice ratio of an LEVSS by testing different
values of the mentioned parameters.

2.3.2. Supply
The operator may increase or decrease the number of vehicles in the system once such a need is identified. Making changes to

the fleet size at the operational level is impractical, and thus must be done here. The operator should be able to monitor and analyze
such a need in a reasonable amount of time. Also, the operator might need to evaluate the current and potential future applications
of strategies, such as rebalancing, reservations, and pricing. System simulations are often employed for this purpose.

The task of fleet sizing in LEVSSs can also be covered by the existing approaches and algorithms. Should the operator decide
for a pure user-centric vehicle rebalancing strategy, the simulation-based optimization method proposed in Cepolina and Farina
6

(2012) can be utilized. This is possible since the characteristics of the ‘‘personal intelligent city accessible vehicles’’, analyzed in
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Fig. 5. Operational decision level of the framework.

their work, are highly similar to LEVs. The fleet size is determined to minimize the rebalancing cost and the waiting time for users
to access an available vehicle. Each vehicle is represented by its initial position at the beginning of the planing horizon, the charging
time, and the battery capacity and discharging law. To apply this approach, we need to replace the charging time with the battery
replacement time. Also, in Cepolina and Farina (2012), the authors deal with station-based systems. To overcome this discrepancy,
we can observe every zone as a station with the capacity equal to the number of parking spots in the zone. Furthermore, by utilizing
the same approach for zone modeling, we can also adapt the queuing networks methodology for fleet sizing, proposed in George
and Xia (2011), to the free-floating systems, including the targeted LEVSS.

Another decision at this level concerns whether a static or dynamic rebalancing should be applied. In the framework, we denote
this decision as the time of rebalancing. In the case of static rebalancing, the operator should decide the specific time of day when
rebalancing operations will be conducted. On the other hand, in the case of dynamic rebalancing, the operator needs to decide the
frequency of rebalancing operations and whether they should be performed online or offline. Finally, for any form of rebalancing,
the operator needs to hire staff dedicated to these activities. This decision is also made at the tactical level since ad-hoc hiring of
workforce would not be feasible in practice. To address these questions, Boyacı et al. present a multi-objective optimization model
that determines the optimal fleet size and staff number to maximize system profit when the vehicles are rebalanced by the operator’s
staff (Boyacı et al., 2015). Their model is built for electrical vehicles and takes into account the battery charging requirements. This
makes it adaptable for our case of LEVs, again by scheduling battery replacement within the time slots planned for charging.

At this planning level, the operator can also decide whether to implement a parking reservation policy and, if so, what type of
policy should be imposed. Users may be required to reserve a parking spot at their destination point before taking the vehicle. This
can be mandatory for all trips or only for specific ones, such as shorter trips. Finally, the parking reservation can be optional or not
available at all. A discrete event simulation methodology for deciding on the parking reservation policy is proposed in Kaspi et al.
(2014). Their approach is not specific to a particular vehicle type or VSS configuration, and it can be adjusted to and used for an
LEVSS as well. Notably, the task of determining the appropriate parking reservation policy is not present in the previous version of
the holistic VSS framework (Ataç et al., 2021). Therefore, during this study, we have enhanced our framework by introducing it, as
shown in Fig. 4.

Lastly, the tactical level should also be responsible for locating temporary stations for possible important events or festivals.
However, we have failed to identify any work in the literature dealing with this particular problem.

2.4. Operational level

This section provides details at the operational level, designed to answer short-term questions in LEVSSs, for demand and supply
actors, respectively. Similarly to the previous decision levels, these questions are represented by the actions layer of the framework’s
operational decision level, given in Fig. 5. The outputs from the actions layer of the tactical level are passed on as inputs to the
models layer of the respective actors.
7
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2.4.1. Demand
With short-term demand forecasting per station/zone, appropriate actions can be taken regarding dynamic pricing. Determining

rices during the system operation has been presented in Pfrommer et al. (2014). We argue that the same approach can be applied
n the LEVSSs in the following manner. In the referenced work, the model that determines whether a user accepts the incentive is
ased on the distance between the stations, additional walking time, and driving speed. The influence of vehicle type on the model
s only through the driving speed, which can be easily adjusted for different vehicle types, including LEVs.

Similar to the other decision levels, demand forecasting can be performed with the predictive models already used for VSSs with
ther vehicle types. For example, we can use convolutional neural network models suggested in Lin et al. (2018). These models
redict hourly demand per station based on the historical data of previous trips, with each trip described with duration, bike
heckout and -in times, start and end stations, user, and user type. Furthermore, Ashqar et al. develop a method for predicting bike
tation counts that also includes weather conditions as predictors (Ashqar et al., 2019). They utilize the Random Forest algorithm to
etermine predictor significance and employ a regression model for the prediction itself, achieving promising results. Time of day,
emperature, and humidity level are shown to be significant predictors for bike station counts in relation to weather conditions.
he predictors used in this method, as well the predictors used in Lin et al. (2018), are not specific to vehicle types. Therefore, the
roposed methods can be used in the case of LEVSSs, too.

.4.2. Supply
By developing models for parking availability and vehicle locations in the next time window, the operator can make daily/hourly

ecisions regarding routing for rebalancing operations and maintenance. We can examine the former in three aspects: routing for
ehicles relocation, routing for staff relocation, or both. We know the type of rebalancing from the strategic level and the time of
ebalancing from the tactical level. Given these, we optimize routing for rebalancing operations both from the vehicle and staff
erspectives, at this decision level. Routing for maintenance is also determined at the operational level. For a system operating an
lectric vehicle fleet, it is important to maintain sufficient battery levels for each subsequent trip. Therefore, regular checks should
e conducted on the vehicles.

There are approaches for solving the abstracted rebalancing problem where the rebalancing operations are not accounted for
n details, e.g., Jorge et al. (2014) and Faghih-Imani et al. (2017). While these approaches can be applied to LEVSSs, they only
etermine the number of vehicles to be rebalanced between specific stations. On the other hand, how the vehicles should be
ebalanced and who should perform the rebalacing are the questions that the mentioned approaches do not answer.

To address those questions, the authors in Boyacı et al. (2017) optimize rebalancing operations of electric vehicles, where the
taff is relocated between stations using bikes. The same approach can be used for the observed LEVSSs with one adaptation: the
taff will need to use foldable bikes or scooters that can fit in the trunk of LEVs. The mentioned approach also accounts for the
harging requirements of shared vehicles. In the case of LEVs, the batteries are not recharged but replaced by the relocation staff.
owever, this difference requires only minor adaptations of the proposed models, where the recharging time should be replaced
ith the battery replacement time, during which the vehicle cannot be used. The battery replacement can occur during a relocation
r maintenance operation. In bike-unfriendly locations or seasons, public transport can be a preferable option for relocating staff. In
uch cases, the approach suggested in Boyacı et al. (2017) can still be used with adjusting the relocation time to the public transport.

Another relevant approach for rebalancing a free-floating electric CSS is presented in Weikl and Bogenberger (2015). This
pproach utilizes an optimization and rule-based method for rebalancing vehicles between zones, and even suggests GPS coordinates
o which the vehicles should be moved based on actual and historical reservation data. The strength of this approach lies in its real-
orld testing in the CSS operations in Munich, which resulted in increased profits and decreased vehicle idle time. This indicates that

he approach is a strong candidate for our observed LEVSS case. Still, the model approximates the cost of staff relocation between
wo vehicle rebalancing operations, which could be improved through further research.

In Febbraro et al. (2012), the authors deal with a free-floating CSS where the operator offers fee discounts to users who return
ehicles to zones with a shortage of vehicles. The user’s response is modeled with a utility function depending on the distance
etween the desired and proposed parking zones and the offered discount. However, the authors do not present a method for
etermining the optimal discount level with respect to system operation or profit, leaving room for future research to explore this
spect.

The authors in Clemente et al. (2017) go one step further and propose an optimization problem to determine the minimum
umber of vehicles within a parking area, below which the incentives should be offered. On the other hand, the probability of user
ccepting an alternative drop-off destination is arbitrarily defined, i.e., in a less precise manner compared to Febbraro et al. (2012).
espite the mentioned imperfections, the incentives for user-based rebalancing can be offered in an LEVSS as it is suggested in the

wo mentioned approaches, Febbraro et al. (2012) and Clemente et al. (2017), or a potentially an improved combination of them.

. Recommendation summary for design and operations of LEVSSs

The analysis presented in the previous section demonstrates the effectiveness of the framework in mapping existing methodologies
nd algorithms to management challenges in a newly designed VSS. By utilizing the framework, we can also identify the gaps and
irect the research in the appropriate way.

To complete our analysis, we use the thorough literature review from Ataç et al. (2021). From there, we select additional
olution methodologies applicable to an LEVSS. We argue that these methodologies can be readily applied to LEVSSs without
8

ignificant adaptations. The reviewed works and solution methodologies, whose adaptation to the specific characteristics of an
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Table 1
Summary of the potential solution methodologies.

Decision level Actor Challenge Potential solution methodologies

Strategic

Supply

Type of rebalancing Queuing-based simulation (Barth and Todd, 1999)

Network design
Simulation (Barth and Todd, 1999; Çelebi et al., 2018),
Dynamic programming (Çelebi et al., 2018), MILP (Boyacı et al., 2015),
Genetic algorithm (Miao et al., 2019)

Vehicle types Discrete event simulation (Illgen and Höck, 2018),
Genetic algorithm (Miao et al., 2019)

Level of service –

Demand

Budget of advertisement Discrete choice models (Campbell et al., 2016; Narayanan and Antoniou, 2023;
Aguilera-García et al., 2020),
Probability models (Kutela and Teng, 2019), Game theory (Wu et al., 2019)

Market placement
Discrete choice models (Campbell et al., 2016; Narayanan and Antoniou, 2023;
Aguilera-García et al., 2020),
Probability models (Kutela and Teng, 2019), Game theory (Wu et al., 2019),
Discrete event simulation (Illgen and Höck, 2018)

User segmentation Hierarchical clustering (Degele et al., 2018)

Tactical

Supply

Time of rebalancing Discrete-event simulation (Repoux et al., 2019; Nourinejad and Roorda, 2014),
Particle swarm optimization (Nourinejad and Roorda, 2014)

Fleet size

User equilibrium modeling (Li et al., 2018),
Particle swarm optimization (Nourinejad and Roorda, 2014),
Simulated annealing (Cepolina and Farina, 2012),
Mean value analysis (George and Xia, 2011)

Number of staff MILP (Boyacı et al., 2015)

Temporary stations –

Parking reservation Discrete-event simulation (Kaspi et al., 2014)management

Demand

Pricing strategy
MILP (Hansen and Pantuso, 2018), Discrete-event simulation (Clemente et al.,
2017),
Particle swarm heuristic (Clemente et al., 2017),
User equilibrium modeling (Li et al., 2018)

Offers and campaigns Negative binomial distribution (Kutela and Teng, 2019)

Operational
Supply

Vehicle rebalancing

Matheuristic algorithm (Zhang et al., 2019), ALNS (Bruglieri et al., 2019),
Binary logit and linear regression models (Faghih-Imani et al., 2017),
Decomposition-based heuristic (Nourinejad et al., 2015; Weikl and Bogenberger,
2015),
MILP (Boyacı et al., 2017), MIP (Jorge et al., 2014)

Staff relocation Decomposition heuristic (Nourinejad et al., 2015), MILP (Boyacı et al., 2017)

Maintenance routing Decomposition-based heuristic (Weikl and Bogenberger, 2015),
MILP and black hole optimization heuristic (Masoud et al., 2019)

Demand Dynamic pricing Quadratic programming (Pfrommer et al., 2014), MINLP (Jorge et al., 2015),
Binary logit model (Febbraro et al., 2012)

LEVSS requires particular discussion, have been analyzed in Section 2. Finally, we associate all identified applicable methodologies,
requiring adaptations or not, to the planning or management tasks, i.e., the actions, specified by the framework. This is summarized
in Table 1.

The papers Ashqar et al. (2019) and Lin et al. (2018) are omitted from Table 1 since they focus only on short-term demand
orecasting without mentioning which management task it is applied to. Nevertheless, the methodologies from those papers can be
ncorporated into solution methodologies for vehicle rebalancing or dynamic pricing.

Based on the analysis presented in Section 2 and Table 1, we conclude that the majority of management and planning tasks
n LEVSSs can be effectively addressed using existing approaches, possibly with some adjustments. Therefore, designers and
evelopers are recommended to utilize the listed approaches and potentially combine them to leverage the findings available at
and. Consequently, the building time of a DSS for LEVSSs is expected to be shortened as the time spent on the trial-and-error
rocess is reduced. Although some of the analyzed methods have the potential to be further developed and improved, they represent
promising starting point for the efficient development of a DSS for LEVSSs.

Additionally, we have identified unanswered questions specific to LEVSSs that have not been addressed in the existing literature,
o the best of our knowledge. These questions are:

• Determination of the desired level of service at the strategic level: The level of service at the strategic level influences
9

lower decision level tasks, i.e., fleet and staff sizing, rebalancing operations, as well as pricing, by introducing additional
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constraints. Therefore, finding the most appropriate strategic level of service is significant for allowing the efficient and
effective performance of an LEVSS in its daily operations.

• Optimization of temporary station locations at the tactical level: Temporary stations can accommodate varying demand
characteristics during specific seasons or periods, such as holiday seasons or festivals. In such periods, passenger flows are
usually different from the regular behavior. Hence, the usual operations might not satisfy the demand as expected.

In contrast to the other tasks from Table 1, finding solutions for the listed two would require dedicated research effort and time.

4. Conclusion

In this paper, we present the functional design of a decision making solution for a VSS utilizing a novel vehicle type, specifically
he LEV. The design is guided by the holistic management framework for VSSs, crafted in our previous research (Ataç et al., 2021).

Through the presented analysis, we identify and present applicable methodologies and approaches for the management and
ptimization of a new LEVSS. Furthermore, we provide suggestions on how these methodologies can be adjusted to suit the specific
haracteristics of LEVSSs. As a result, potential designers or creators of an LEVSS management system are presented with justified
nd significant directions for the system implementation, with the ultimate goal of enhancing the development process. Additionally,
e identify research gaps that need to be addressed in order to provide a comprehensive management and optimization solution

or LEVSSs. The implementation directions and research gaps are summarized in Section 3.
The previously developed framework aims to address all vehicle types and settings of VSSs. With this work, our goal is also

o demonstrate the framework’s applicability and usefulness. Furthermore, we have identified another needed extension of the
ramework itself. The task of parking reservation management at the tactical level was previously missing and now it has been
dded to the framework.

The limitation of the presented study is a notable absence of works on the management and optimization of LEVSSs at all
ecision levels. This hinders our ability to compare our suggestions for adjusting methodologies with analytically proven models
nd algorithms. However, we intend to address this limitation in our future work through a planned collaboration with an industrial
artner that specializes in developing decision making solutions for VSSs. This collaboration will provide us with valuable insights
nd access to real-world data and scenarios, enabling us to validate our suggestions and potentially tailor the selected methodologies
pecifically for LEVSSs.

Furthermore, we plan to work on the identified research gaps that debilitate creation of a comprehensive decision making solution
or LEVSSs. Those are the strategic analysis of the level of service and the placement and sizing of temporary stations at the tactical
evel, as presented in Section 3. Given that these topics are not covered in the existing literature, to the best of our knowledge, for
ny kind of VSS, we believe that their solution will contribute to the management of other types of VSSs as well. Additionally, we
ill continue to further analyze other VSS types and potentially extend the framework to incorporate additional management and
ptimization tasks that have yet to be identified.
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