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Abstract

Advancements in object detection technology have led

to its widespread application across various fields, yet its

adoption in agriculture, particularly for precision tasks like

orchard navigation and crop monitoring, has not been fully

realized. Our research extends the dialogue on agricultural

applications by focusing on the vital role of data augmen-

tation techniques in enhancing the detection of blueberry

bushes, a critical part of smart farming in blueberry or-

chards. Utilizing a data set that captures blueberry bushes

under diverse environmental conditions, we conduct an in-

depth analysis of how different data augmentation strate-

gies affect the performance and robustness of bush detec-

tion models. We present a comparative study to understand

the impact of such techniques, and propose a combined data

augmentation that outperforms individual approaches. Our

findings establish benchmarks for model performance on

this task, and also illuminate the path forward for improving

advanced detection methods in general agricultural appli-

cations. By detailing the efficacy of various augmentation

methods, we aim to spur further innovation in agricultural

technology, thus helping the community move towards more

efficient and intelligent farming practices.

1. Introduction

Agriculture stands as a cornerstone of global food secu-

rity, economic development, and sustainability. It is a sec-

tor that directly influences the lives of billions, ensuring a

stable supply of food, generating employment, and foster-

ing socio-economic growth [2, 7]. Despite its critical im-

portance, agriculture faces numerous challenges, including

climate change, resource scarcity, and increasing demands

from a growing global population [1, 26, 36]. The integra-

tion of advanced technologies, including object detection

and other machine learning methods, offers promising so-

lutions to revolutionize traditional farming practices, lead-

ing to improved crop management, yield prediction, and re-

source allocation [21, 29, 39]. Moreover, generative models

have emerged as a powerful tool in this technological arse-

nal, enabling the creation of synthetic agricultural data that

can further enhance the training of machine learning mod-

els, thereby improving their ability to generalize across di-

verse and complex agricultural scenarios [25]. As such, fur-

ther advancing object detection applications and exploring

the role of generative models within agriculture is essential

for harnessing the potential of technology to help secure fu-

ture food supplies and promote environmental stewardship.

Data augmentation represents a critical methodology in

the development of robust machine learning models, par-

ticularly in the domain of object detection. In agriculture,

the variability of environmental conditions, plant appear-

ances, and growth stages poses significant challenges for

automated systems. Data augmentation techniques, which

artificially expand the diversity of training data through

modifications and transformations, are crucial for improv-

ing model generalization and performance. In particular,

by simulating a wider range of conditions and scenarios,

these techniques enable detection models to become more

resilient to real-world variability, enhancing their accuracy

and reliability in agricultural applications [27]. This is

paramount for tasks such as crop disease detection [14], pre-

cision weed control [15], or fruit counting [34], to name a

few, where the precision of detection models directly im-

pacts decision-making processes and operational efficiency.

The importance of data augmentation in agriculture extends

beyond model performance, facilitating the adoption of au-

tonomous systems and smart farming solutions capable of

adapting to complex agricultural environments. In this con-

text, our study explores the effects of various data augmen-

tation techniques on the performance of detection models,

with a special focus on blueberry bush detection.

Furthermore, robots and automation have emerged as

indispensable tools for ensuring productivity and success

in agriculture today, particularly in large fields and amidst

escalating labor shortages. Unmanned ground vehicles



(UGVs) are increasingly prominent in agricultural robotics

due to their ability to integrate sensors and imaging tech-

nology, facilitating crop assessment and assisting in activi-

ties like fertilization, seeding, and weed management [11].

Accurate bush detection in images captured with a camera

mounted on a UGV is a requirement for the task of au-

tonomous vehicle guidance in orchards, where GPS infor-

mation may not be reliable or precise enough [9], as well as

for other tasks such as precise weed control [10]. Recogniz-

ing the value of blueberry crops and the challenges associ-

ated with their cultivation, our research aims to advance the

application of autonomous robots and precision agriculture.

As such, through a rigorous examination of data augmenta-

tion, we seek to not only enhance model efficacy in detect-

ing blueberry bushes but also contribute to the broader field

of agricultural innovation, where the potential for techno-

logical intervention remains largely untapped [22].

We summarize the contributions of our work below:

• we provide a study of how different data augmentation

techniques impact the performance of bush detectors;

• following this exploration, we propose a data augmenta-

tion combination that outperforms the individual augmen-

tation approaches.

2. Related Work

In this section we give an overview of the landscape of data

augmentation techniques within the field of object detec-

tion, with a particular focus on agricultural applications.

2.1. Data Augmentation

The importance of extensive data sets for training deep

learning models is paramount [13], a principle that holds

especially true in areas that involve complex interactions

such as those encountered in agriculture [19]. Data aug-

mentation is a critical technique in this context, serving to

artificially enhance the size and diversity of training data

sets. This is commonly achieved through the application

of various transformations to existing data, thereby gener-

ating new data points. Such methods are crucial for im-

proving the performance of deep learning models, as they

help to mitigate over-fitting, bolster the models’ ability to

generalize, and address challenges associated with limited

data availability [31]. By introducing a broader array of

variations to the training data, models are trained to better

handle the intricacies and unpredictability of real-world ap-

plications, enhancing their accuracy and reliability across

different scenarios [20]. In this work we explore the use of

data augmentation for the task of object detection, as ap-

plied to the important agricultural task of bush detection.

2.2. Agricultural Applications

In the realm of agriculture, high variability of environmental

conditions and the scarcity of data compound the challenges

of applying deep learning models effectively. Traditional

data augmentation techniques, such as color and geomet-

ric transformations, emerged as vital tools in this domain

[4, 30]. These methods adapt models to the diverse lighting

conditions and perspectives under which agricultural data is

captured, effectively expanding the range of conditions rep-

resented in the training data sets and resulting in improved

model performance [28]. Specifically, in the context of

UGV-captured data, data augmentation becomes crucial due

to the inherently slow and costly nature of data collection,

coupled with the low variability in the obtained data. This

practice is instrumental in enhancing the robustness and ac-

curacy of object detection models used for essential tasks

like crop monitoring and disease detection [24]. Moreover,

innovative approaches to data augmentation, such as the

creation of synthetic images through techniques like col-

lage [33] or mosaic generation [5], have shown promise in

further enhancing the performance of convolutional object

detectors within the complex and non-structured environ-

ments typical for agriculture. These methods were shown

to preserve the texture and context of target objects against

realistic backgrounds, resulting in substantial improvement

in model precision. This earlier work underlines the critical

role of diverse and extensive data sets in developing robust

object detection models for agricultural applications.

2.3. Generative Augmentation

As the agricultural sector increasingly adopts advanced

technologies to surmount its myriad challenges, there has

been a notable uptick in research exploring the integration

of generative networks [8, 16, 40]. The diversity of architec-

tures within the realm of Generative Adversarial Networks

(GANs) [25], for instance, highlights the versatility and po-

tential of such approaches. These developments underscore

the potential of generative networks to enrich training data

with synthetic, highly realistic agricultural data, offering a

previously unattainable level of data diversity [3].

On the other hand, traditional augmentation methods

such as geometric transformations have been shown to

reach a comparable or better performance than generative

models on certain tasks [31]. This is understood to largely

be due to challenges in generating agricultural images that

are high in both quality and realism. Nevertheless, research

and development in this field positions generative augmen-

tation as a pivotal future direction for agricultural applica-

tions. The potential of these models to generate an unlim-

ited array of realistic images could profoundly transform the

landscape of data availability, greatly improving the train-

ing, robustness, and efficacy of deep models in agriculture,

which is a direction we also explore in our current work.



(a) Color image augmentations: hue adjustment; saturation adjustment; value adjustment; combined adjustments

(b) Geometric image augmentations: translated image; scaled image; flipped image; combined adjustments
(c) Mosaic augmentation (bounding boxes

indicate bush labels)

Figure 1. Examples of color, geometric, and mosaic image augmentation

3. Data Augmentation for Bush Detection

In this section we explore a broad spectrum of data augmen-

tation techniques applicable to the task of bush detection in

blueberry orchards, ranging from standard image transfor-

mations to sophisticated generative-based ones.

3.1. Color Augmentations

Color augmentations are a set of techniques used in image

processing to modify the colors in images to increase the

diversity of the training data and improve model general-

ization. These techniques, which include adjustments in

brightness, saturation, and hue, effectively simulate a va-

riety of lighting conditions and color settings that might not

have been present in the original data (illustrated in Fig. 1a).

Given the practical difficulties of capturing images at ev-

ery time of day and season, in the context of bush detec-

tion color augmentations can be particularly useful. They

allow for the simulation of different times of the year and

day, such as creating a more grayish tone to mimic winter,

enhancing brightness for a summery feel, or adjusting the

light to recreate morning or evening scenes. This versatility

enhances the model’s ability to interpret images accurately

across diverse conditions, making it more robust to changes

in lighting conditions and color distributions.

3.2. Geometric Augmentations

In enhancing our model using geometric augmentations,

we focused on techniques expected to impact agricultural

applications, and especially bush detection (see Fig. 1b).

In particular, translation augmentation is tailored to mimic

the shifting perspectives an UGV might encounter due to

uneven terrain or between the dense foliage of blueberry

bushes, ensuring reliable detection even when interacting

with plants, fruits, or other obstacles. This prepares the

UGV to accurately identify targets, regardless of their po-

sition in the vehicle’s field of view, enhancing operational

efficiency and precision. Scale and flip augmentations ad-

just the size and orientation of objects in training images,

vital for recognizing the varied sizes and shapes of blue-

berry bushes. This helps the UGV accurately assess and

interact with different parts of the orchard, from individual

berries to entire bushes, and handle tasks regardless of the

object’s size or orientation.

3.3. Mosaic Augmentations

Mosaic image augmentation is a technique designed to

stitch together multiple images into a single composite

training sample. This approach is very useful in enhanc-

ing detection models by introducing a diverse array of vi-

sual contexts and scenarios within a single image frame (see

Figure 1c, where zeros represent the bush class). It allows

models to encounter and learn from a variety of object po-

sitions, scales, and environmental conditions, thereby im-

proving their ability to generalize from the training data to

real-world situations.

In applications like ours, mosaic augmentation can be

quite useful. It exposes the model to complex environments

where blueberry bushes might appear in different configura-

tions and densities. However, the process of stitching multi-

ple images together in mosaic augmentation can sometimes

result in unintended and unrealistic scenarios. For example,

blueberry bushes from one segment might appear as if they

are growing on top of the sky in another segment, creating

visually incongruent scenarios.

3.4. Gaussian Noise Augmentation

Gaussian noise augmentation involves superimposing a

layer of Gaussian noise over original images (see Fig. 2a).

This noise, characterized by its bell-shaped curve centered

around a zero mean, introduces random variations to the

pixels, emulating the type of visual disturbances that might

occur in real-world imaging scenarios due to issues such as

sensor fouling or other hardware deficiencies.



(a) Gaussian noise image augmentations: σ=50, Frequency=1; σ=100, Frequency=1; σ=50, Frequency=0.5;

σ=100, Frequency=0.5

(b) Cutout image augmentations: Area=0.02, Aspect=1:1; Area=0.02, Aspect=1:3; Area=0.08, Aspect=1:1;

Area=0.08, Aspect=1:3

(c) Collage image augmentations

(d) Mix-up augmentation λ = 0.5

(e) DCGAN generated images of bushes

Figure 2. Examples of Gaussian noise, cutout, collage, mix-up, and DCGAN image augmentation

The effect of this noise can be controlled using frequency

and σ parameters. In particular, σ determines the stan-

dard deviation of the noise values, affecting the intensity

and spread of Gaussian noise added to the pixels. On the

other hand, frequency controls how often the noise is ap-

plied, with a value of 1 indicating it is applied to every pixel,

and values closer to 0 resulting in sparser noise distribu-

tion across the image. For UGVs operating in orchards, in-

troducing Gaussian noise during training helps prepare the

model for the inevitable variations in lighting, weather con-

ditions, and sensor imperfections they could encounter.

3.5. Cutout Augmentation

Cutout augmentation is a technique that enhances the abil-

ity of image-processing models to handle occlusions and

partial visibility by randomly erasing sections of an image.

This method effectively simulates real-world disruptions,

such as foliage, branches, or equipment partially covering

the target objects, by replacing selected image regions with

zeroes and thus creating artificial occlusions (see Fig. 2b).

As seen in the figure, method parameters include area and

aspect, with area dictating the percentage of the image area

to be cut out, and aspect determining the aspect ratio of the

cutout box. This approach helps the model robustly and re-

liably detect and classify blueberry bushes even when they

are not fully visible, a common challenge in dynamic and

complex orchard environments.

3.6. Collage Augmentation

This method involves placing objects, such as cutouts of

blueberry bushes, onto entirely different scenes. These

cutouts, accurately annotated and extracted from their origi-

nal context, are strategically positioned in the lower third of

the new background, to mirror the real-world positioning of

ground-truth labels (see Fig. 2c). This augmentation strat-

egy creates diverse and complex scenes by introducing the

objects of interest into a variety of backgrounds, thereby

challenging the model to recognize and classify these ob-

jects in contexts outside of their common setting. The ran-

domness in the number of objects added and their placement

ensures that the model is exposed to a wide range of scenar-

ios, enhancing its ability to identify blueberry bushes across

different backgrounds and under various conditions.

3.7. Mix-up Augmentation

Mix-up approach [37] was created for classification tasks,

and it has since been shown to work well in object detection

applications as well [43]. This approach essentially blends

two images and their labels together based on a weighting

parameter λ (see Fig. 2d). By blending the data from two

separate training examples, mixup encourages the model

to learn more robust and generalizable features that are

applicable across different variations of blueberry bushes,

thereby improving its ability to detect them accurately in

diverse and noisy environments.



3.8. DCGAN Augmentation

When it comes to augmentation using generative models,

in this work we focused on applying Deep Convolutional

GAN (DCGAN) for the specific purpose of generating bush

labels, training the method on the bush examples from the

non-augmented data. Generating images with a DCGAN

involves an interplay between two neural networks: the gen-

erator and the discriminator, which are trained adversarially

to each other. The generator’s role is to create images indis-

tinguishable from the real ones, while the discriminator’s

task is to distinguish between the generated (i.e., fake) im-

ages and actual (i.e., real) images. Over time, this competi-

tion drives both networks to improve their capabilities, with

the generator producing increasingly more realistic images

throughout the training [12].

The key aspect of DCGAN lies in its use of deep con-

volutional networks, which are particularly adept at han-

dling image data. Convolutional layers are designed to rec-

ognize and extract patterns and features from images, such

as edges, textures, and more complex shapes, making them

highly effective for image-related tasks. In the context of

agriculture, DCGAN is expected to be useful for generating

high-quality, diverse, and realistic images of crops, plants,

or agricultural scenarios (see Figure 2e for examples).

4. Experiments

In this section, we focus on empirical evaluation that sheds

light on the role of data augmentation in agriculture. We

outline the experimental setup, including the models used,

data analysis, and the specific augmentation techniques ap-

plied. Our discussion will cover the obtained results and

what these outcomes mean for agricultural applications.

4.1. Data

The data set used is the blueberry orchard data [9] totaling

7,250 training, test, and validation images. The data con-

tains images of a blueberry orchard, captured with an RGB

camera with a resolution of 1920×1080 pixels mounted on

a UGV. The images represent blueberry bushes as seen with

a back-view camera pointed down the row and a side-view

camera pointed directly at the bushes, and were captured

during the UGV’s ride between different rows. The images

were created during two growing seasons, at different phe-

nological stages, and captured at different times of day and

illumination conditions.

The objects of interest in the images are blueberry

bushes, where labels frame the base of the bush in con-

tact with the ground, as well as poles (such as hail netting

poles) where labels include as much of the pole as possible,

including the contact of the pole and the ground. This col-

lection encompasses a total of 24,830 bush labels and 2,986

pole labels, with the height and width distribution of the la-

Figure 3. Width and height distribution of bush and pole labels

bels illustrated in Figure 3. Lastly, the data set is divided

into different splits: approximately 75% (5,437 images) for

training, 10% (725 images) for validation, and around 15%

(1,088 images) for testing.

4.2. Augmentation Approach

We aimed to increase the overall data size by 30% to

ensure a uniform augmentation strategy across the ap-

proaches. In most cases this involved randomly selecting

a required number of original images, running the augmen-

tation method, and reintegrating the resulting images into

training and validation sets to be used during training. In

the remainder of this section, we provide details on each

augmentation approach used to enrich the original data:

• Color Augmentations: We adjusted the color properties

of each selected image by changing the HSV (Hue, Satu-

ration, Value) values according to a random percentage of

their original values, within predefined ranges of ±1.5%,

±70%, and ±40%, respectively.

• Geometric Augmentations: Our approach included geo-

metric transformations such as translation, scaling, and

horizontal flipping. All selected images were randomly

shifted within a ±10% range of their dimensions and re-

sized within a ±50% range of their original scale. Ad-

ditionally, images were flipped horizontally with a 50%

probability, mimicking various orientations and perspec-

tives that objects can assume in real-world conditions.

• Mosaic Augmentation: As a part of this technique we ran-

domly selected four images to generate one additional im-

age, repeating this process multiple times to achieve the

required data increase.

• Gaussian Noise Augmentation: To replicate the unpre-

dictable nature of environmental noise, we introduced

Gaussian noise with a zero mean and a standard devia-

tion ranging between 30 and 70. This augmentation was

applied to images where pixel values ranged from 0 to

255, at a frequency of 0.8.

• Cutout Augmentation: This technique randomly erased

a single part of the selected image, which was then filled



Table 1. Experimental results for the considered augmentation techniques; bolded numbers denote best performance per metric; dashed

line separates single-augmentation approaches from approaches using multiple augmentations

All Bush Pole

Method P R F1 mAP
50

mAP
50-95

P R F1 mAP
50

mAP
50-95

P R F1 mAP
50

mAP
50-95

None 0.750 0.650 0.720 0.480 0.696 0.800 0.680 0.740 0.500 0.735 0.700 0.620 0.680 0.460 0.658

Color 0.790 0.690 0.750 0.510 0.737 0.830 0.710 0.780 0.530 0.765 0.750 0.670 0.710 0.490 0.708

Geometric 0.810 0.710 0.780 0.550 0.757 0.840 0.730 0.800 0.570 0.781 0.780 0.690 0.740 0.530 0.732

Mosaic 0.800 0.720 0.760 0.530 0.758 0.820 0.740 0.790 0.550 0.778 0.780 0.700 0.740 0.520 0.738

Gaussian 0.770 0.670 0.730 0.490 0.717 0.790 0.690 0.750 0.510 0.737 0.780 0.700 0.740 0.520 0.738

Cutout 0.760 0.660 0.710 0.470 0.706 0.780 0.680 0.730 0.490 0.727 0.740 0.640 0.690 0.460 0.686

Collage 0.729 0.671 0.728 0.471 0.699 0.777 0.680 0.761 0.461 0.725 0.826 0.689 0.795 0.451 0.751

Mix-up 0.832 0.601 0.742 0.473 0.698 0.910 0.634 0.805 0.478 0.747 0.753 0.567 0.679 0.468 0.647

DCGAN 0.755 0.642 0.706 0.420 0.694 0.854 0.668 0.803 0.463 0.750 0.655 0.616 0.609 0.378 0.635

Uniform 0.829 0.656 0.732 0.766 0.461 0.831 0.700 0.760 0.815 0.461 0.827 0.612 0.703 0.716 0.461

Combo 0.775 0.712 0.742 0.792 0.475 0.844 0.755 0.797 0.849 0.470 0.706 0.670 0.688 0.735 0.480

Full-combo 0.853 0.803 0.884 0.615 0.827 0.893 0.767 0.877 0.581 0.825 0.813 0.839 0.890 0.648 0.826

with zeros. The size of the erased section varied randomly

from 1% to 4% of the total image area, with random as-

pect ratios ranging from 0.8 to 3, simulating realistic oc-

clusions found in natural environments.

• Collage Augmentation: We generated new scenes by

overlaying bush and pole cutouts, extracted from various

images, onto random background images without pre-

existing objects. This process varied the scene complexity

by altering the number of superimposed objects, ranging

randomly from 1 to 5, positioned in the lower third of the

image to mirror the natural placement of the objects.

• Mix-up Augmentation: This technique blended two ran-

domly chosen images into one by averaging them to-

gether using λ = 0.5.

• DCGAN Augmentation: We focused on generating indi-

vidual bush labels, aiming to increase the total number

of bush labels by 30% and upweighting pole and nega-

tive labels by the same amount. Synthetic bush images

were created at a 128x128 resolution. However, to closely

replicate the dimensions of the original labels, we further

resized the generated images with a random deviation be-

tween 0 to 30 pixels. Further details about DCGAN train-

ing and integration can be found in the appendix.

4.3. Detector Model

We employed the YOLOv8 ºnanoº version (YOLOv8n)

as our object detector, shown to be an efficient and ef-

fective solution in real-time applications [6, 41, 42]. The

YOLOv8n model, a progression from the earlier YOLOv5

[38] architecture which has long been a staple for similar

object detection tasks [9], is distinguished by its lean de-

sign, incorporating 3.2 million parameters that facilitate a

good balance between compactness and performance [18].

This model mirrors the detection accuracy of its YOLOv5n

predecessor, yet stands out significantly for its training

speed, achieving the same results in about one-third of the

time [17]. This high efficiency of the detector is critical to

ensure real-time guidance and decision-making of the UGV.

The training process was initiated from a model pre-

trained on the COCO data, and was run for 50 epochs.

We maintained the default input resolution at 640×640 pix-

els, resizing the images to match this specification. Dur-

ing training we minimized a composite loss function, in-

tegrating three pivotal components: classification loss, ob-

ject loss, and location loss [38, 44]. Both classification

and objectness losses are computed using binary cross-

entropy, while the location loss is derived from the com-

plete intersection-over-union (IoU) loss [38, 44]. This mul-

tifaceted loss function plays a critical role in refining the

model’s ability to accurately identify and localize objects

within an image. Lastly, we used a batch size of 32 and a

learning rate of 0.01, employing the Adam optimizer [23].

For the evaluation step, the detection confidence thresh-

old was set to 0.24, while the value of the matching IOU

threshold was set to the default value of 0.6. Furthermore,

Non-Maximum Suppression (NMS) with an IOU threshold

of 0.6 was applied to the model output to eliminate dupli-

cate detections [35].

4.4. Results

We used precision, recall, F1 score, mAP50, and mAP50-95

to evaluate the approaches [32, 44], with the results shown

in Table 1. Here, mAP50 assesses the model performance

at a 50% IoU threshold, while mAP50-95 averages perfor-

mance across a range of IoU thresholds from 50% to 95%.

Compared to the approach without any augmentation,



we can see that the introduction of color augmentations

offered only a slight increase in metrics, This can be ex-

plained by the uniformity of the test images, which were all

captured under similar sunny conditions. This homogene-

ity meant there was limited scope for improvement through

variations in image brightness and saturation. However,

we can see that a boost in performance was observed with

geometric augmentations such as translation, flipping, and

scaling, markedly improving precision in object localiza-

tion, evidenced by increases in both mAP50 and mAP50-95

metrics. This notable enhancement can be attributed to the

nature of the data collection process. The UGV’s mobil-

ity inherently introduces variability in the perspective, po-

sitioning, and orientation of the captured objects, with the

detector thus benefiting from this augmentation technique.

Mosaic augmentation brought about a notable enhance-

ment in recall rates across all categories, with an average

increase of about 10%. This technique helped the model

generalize better by creating randomized composite scenes,

making it more adept at identifying objects under varied

conditions. Moreover, Gaussian augmentation managed to

match or slightly exceed the baseline metrics, though not

yielding substantial improvements.

We can also see that collage augmentation presented a

nuanced outcome. While generally aligning with baseline

performances, it notably boosted the precision, F1 score,

and mAP50-95 for the pole category. This suggests that the

original dataset may have had a limited representation of

poles compared to bushes, highlighting a potential imbal-

ance or deficiency in the data set. Furthermore, mix-up en-

courages the model to focus on more generalized features

rather than memorizing specific details of the training im-

ages. By learning from these blended images, the model be-

comes better at identifying the presence of objects within an

image, even when they are partially obscured or presented

in a less typical context. Given this approach, it is not sur-

prising that the precision metrics across all categories expe-

rienced a boost of more than 10%.

Lastly, the experimentation with DCGAN-generated im-

ages produced mixed results, with performance occasion-

ally outperforming the baseline approach. The variability

points to the nature of the generated images lacking real-

ism, which might have contributed to the fluctuating out-

comes. Further improving the realism of these synthetic

images could potentially enhance their effectiveness.

4.4.1 Proposed Augmentation Strategies

After careful analysis of the unique benefits provided by

each augmentation technique, we decided to select and eval-

uate a combination of geometric, mosaic, collage, and mix-

up augmentations as a new strategy. This was motivated by

the analysis detailed in Table 1, where the best result for

each metric is highlighted in bold, underscoring the aug-

mentation that contributed most significantly to it.

We implemented the above-mentioned augmentations in

three distinct variants, listed below the dashed line in Table

1 as ºUniformº, ºComboº, and ºFull-comboº approaches.

The uniform approach involved applying each of the four

chosen augmentation techniques uniformly to one-quarter

of the additional 30% of data across our train and validation

sets. In the combo approach, all four augmentations were

applied concurrently to each image in the additional 30%

of data. In this approach each image of the expansion was

augmented first with the collage augmentation technique,

followed by the geometric, mix-up, and finally the mosaic

technique. Lastly, for the full-combo method the 30% in-

crease was generated exclusively using the collage augmen-

tation, after which the remaining three augmentations were

applied to every image in the entire data set (including both

the original and the expanded data), in the same order as in

the combo approach.

We can see that the combo approach generally outper-

formed the uniform method in most metrics, suggesting bet-

ter generalization capabilities due to the more diverse train-

ing data that it provides. However, it struggles with preci-

sion compared to the uniform method, potentially indicat-

ing that the extensive modifications from multiple augmen-

tations might distort the original images too significantly.

Motivated by the combo method’s superior performance

over the uniform strategy in most metrics, we decided to

investigate the full-combo approach. This method not only

improved overall generalization but also enhanced preci-

sion, which is a notable contrast to the combo method’s

struggle in this area. We theorize that the improved pre-

cision in the full-combo method could be attributed to the

larger percentage of the overall training data consisting

of augmented images, thus providing more comprehensive

learning examples. Despite these advancements, we notice

that the full-combo method exhibited a lower mAP50 com-

pared to both the uniform and combo methods, indicating a

potential trade-off between extensive augmentation and op-

timal detection thresholds across different object scales.

To conclude, we can see that the full-combo strategy

resulted in significant enhancements across the board for

each object category. This result not only underscores the

strength of the proposed augmentation approach, but also

emphasizes the importance of employing an augmentation

strategy that is tailored specifically for the problem domain

in question (as we rely on a combination of augmentations

shown to provide benefits for the agricultural task at hand).

4.4.2 Qualitative Analysis

We further analyzed the results of the baseline and two best

methods in Figure 4, where metrics sliced by the size of



Figure 4. Analysis of false positives and negatives across image

size for baseline, geometric, and the proposed full-combo model

false positive and false negative examples are shown. In

particular, we provide the results of the geometry augmen-

tation and the proposed full-combo model, comparing them

to the no-augmentation baseline. We can see that for false

positives the improvement of the proposed approach is no-

table but not large. However, when it comes to false neg-

atives the proposed method achieved substantially better

results, providing only half the number of false negatives

compared to the baseline and approximately 20% less than

the geometry-augmented model. This is also illustrated in

Figure 5 showing a common composite environment within

blueberry orchards, along with typical detection results of

the baseline and the proposed approaches. We can see that

the model trained with the proposed augmentation success-

fully identified all bushes, unlike the baseline that struggled

with smaller objects. Such improvements can be attributed

to the new training data used, which introduced complex

scenes and transformations that enabled the model to gen-

eralize more effectively across all object sizes.

5. Conclusion

We investigated various augmentation techniques for agri-

cultural applications, specifically focusing on blueberry

bush detection. We considered and discussed several rel-

evant image transformations, conducting detailed exper-

Figure 5. Example test results of the baseline and the proposed

full-combo method on a typical scene, respectively

iments and identifying the augmentation techniques that

most impacted the performance of the object detector

model. This led us to propose an augmentation approach

that combined the approaches that showed the largest met-

rics improvements, resulting in a comprehensive enhance-

ment of the model’s overall effectiveness. This research un-

derscored the necessity of choosing augmentation strategies

that are specifically suited to address distinct challenges

presented by the problem domain under investigation.
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