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Abstract: Precision treatment of blueberries has recently gained high importance due to the value of 

the crop. Such treatment is intended to be performed by unmanned ground vehicles (UGVs). However, 

the autonomy of UGVs is constrained by technological limitations, requiring their tasks to be executed 

in optimal routes. This paper presents an ALNS-based approach for the optimisation of UGV routes 
and its evaluation on problem instances based on an actual blueberry field. We also identify possible 

alternative solution methodologies that will be evaluated in the future research. 
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1 INTRODUCTION  

 

Blueberries are a high-value crop which requires a careful and dedicated treatment. To address 

this need, the BioSense Institute is developing an unmanned ground vehicle (UGV) specialized 

in precision monitoring, soil sampling, and spraying in blueberry plantations. The UGV 

autonomy is of major importance as it determines the efficiency of UGV deployment. Hence, 

determining the near-/optimal UGV route for tasks execution, considering the observed 

blueberry field, its rows and characteristics, the requested task locations within the field, and 

the starting point of UGV’s execution, is essential.  

We particularly analyse the problems of precision spraying and soil sampling performed by 

the UGV. In both cases, the UGV is required to visit certain points in the blueberry field and 

perform spraying or soil sampling. To reach those points, the UGV can only move between 

blueberry rows, without crossing them, as shown in  

Figure 1. Changing rows is only permitted at the ends of each row. Furthermore, there is a 

drainage trench, located adjacent to each field row, preventing the UGV from approaching the 

row from that side. The trench is represented with a zigzag line in  

Figure 1. Finally, the UGV’s camera for precise positioning is looking on the left-hand side, 

with respect to the UGV movement direction. The camera must face the targeted blueberry row 

to ensure accurate UGV positioning. Therefore, we aim to approach each spraying/sampling 

point (SSP) so that the camera is looking in its direction, thereby avoiding UGV rotation and 

additional power consumption.  

Figure 2 illustrates a desired, optimised UGV path. The green points and purple diamonds 

denote the allowed and visited projections of SSPs to inter-row corridors. At the former, the 

UGV approaches the SPP with the camera facing it, while the latter denote locations where the 

UGV must rotate to achieve precise positioning. The dark green lines denote the travelled path. 

The black X marks represent the SSPs projections that are not allowed due to the presence of 

the drainage trench. The red points and dashed lines denote the inter-row corridors that are not 

utilised. 

Since the UGV should visit every SSP in the near-/optimal manner, with respect to the 

abovementioned physical characteristics of blueberry fields and utilised UGVs, this problem 

represents a customised version of the travelling salesman problem (TSP). In this paper, we 

provide the details of the extended problem and our solution approach. 
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The remaining of the paper is organised as follows. In Section 2, we analyse the related 

work. Sections 3 shows the details of problem modelling and solution algorithm. Section 4 

presents the results and evaluation of our solution approach. Finally, Section 5 gives the 

conclusions and our intentions for the further research. 

 

   
 

Figure 1: The appropriate UGV 

movement within the field rows. 

 
 

Figure 2: An optimised UGV route. 

 

2 RELATED WORK 

 

One of the most common approaches for TSP solution is the Lin-Kernighan’s improvement 

heuristic, which belongs to the class of local search algorithms [3]. Here, the search starts from 

an arbitrarily selected tour, and, at each state, the algorithm tries to remove k tour arcs and 

insert k new ones to improve the solution cost. Such move is known as the k-opt move [3].  

In general, metaheuristic algorithms such as simulated annealing (SA, [1]), tabu search [4], 

and genetic algorithms (GA, [2]) are also commonly employed to solve the TSP. Recently, 

adaptive large neighbourhood search (ALNS), a metaheuristic algorithm, has been used to 

solve the TSP with good results [5, 6]. This metaheuristic builds upon the SA framework and 

utilises a set of heuristic moves, called destroy and repair operators, to generate candidate 

solutions. The purpose of a destroy operator is to create a significantly different solution and 

hopefully push the search process into an unexplored part of the search space. Then, the repair 

operator is responsible for restoring the feasibility of the new solution, if needed. In each 

iteration, a pair of destroy-repair operators is randomly selected driven by their success rate up 

to that point, i.e., more successful operators have higher chances of being selected. If the 

operators create a better solution, their success rate is increased, otherwise, it is penalised. 

Based on the benchmark tests, Laporte, Ropke, and Vidal suggest several other solution 

methods, such as GA, memetic algorithms, parallelised local search algorithms, and hybrid 

approaches combining GA and neighbourhood search [5]. These methods are located on the 

Pareto front representing the compromise between the average optimality gap and solution 

time. Consequently, all of them are considered good candidates for the solution of our problem. 

 

3 SOLUTION METHODOLOGY 

 

To account for the constraints additional to the original TSP, we perform specific data 

preparation. Each sampling point is projected onto a corresponding point in the inter-row 

corridor, on the opposite side of the drainage trench. The graph utilised in the TSP solving 
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consists solely of these projection points. With that, we avoid approaching the rows from the 

side of the trench.  

Rather than explicitly implementing the constraint that the precise positioning camera must 

look towards the sampled row, we solve the relaxed problem. Each rotation incurs a substantial 

penalising cost, which drives the search algorithm to avoid such situations. The benefit of such 

a solution approach is allowing the algorithm to investigate states, worse than the current 

solution, and escape local minima. Finally, the objective function accounts for an additional 

rotation cost at each location where the camera is faced opposite to the sampling point. 

Thus, the mathematical model of our UGV routing problem is defined by extending the 

objective function of the original TSP model [1] with the cost of UGV rotations. The cost of 

travelled distance and UGV rotations are both expressed in the amount of utilised energy, in 

the same units, and combined in a single objective function with a plain sum. The model 

constraints are the same as in the original TSP model [1]. Due to limitations in paper length, 

we omit the mathematical formulation of the model, which is available upon request. 

One of the simplest solution approaches for the TSP is the greedy algorithm [1]. In our case, 

the greedy algorithm starts at the SSP closest to the UGV’s starting position. At each SSP, it 

selects the nearest unvisited SSP as the next destination. This process is repeated until all SSPs 

have been visited. Although it is quite naive, the greedy algorithm is capable of quickly finding 

the solutions that outperform than the man-made ones. In our solution approach, we utilise the 

greedy algorithm to generate an initial solution, which will be further improved. 

Finally, we apply the heuristic based on the ALNS framework, starting from the initial 

solution. Following the findings of [3], we combine the pairs of destroy and repair operators 

into unified operators based on k-opt moves. In the current state of our research, we select 2-

opt, 3-opt, and 4-opt operators, while the larger-k-opt operators induce either a longer 

execution time without yielding better solutions, or even the algorithm being trapped in 

solution spaces distant from the best-found solution. We have also tested shuffle operators, 

which randomly permute subtours. However, these did not lead to any result improvements. 

 

4 EXPERIMENT RESULTS 

 

The ALNS parameter tuning included selecting the initial and final probabilities for accepting 

a worse solution, the strategy for temperature drop, the number of temperature drops, and the 

number of intra-temperature iterations. Figure 3 illustrates the achieved algorithm behaviour, 

demonstrating desired exploration and diversification at the beginning, followed by intensified 

local search in the most promising search region. The green line denotes the current solution, 

while the blue line represents the overall best-found solution.  

 

 

 

 

 
Figure 3: The desired algorithm execution. 

The x-axis denotes the iteration number, 

while the y-axis represents the objective 

function value. 
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For the algorithm evaluation, we have solved the three problem instances based on the model 

of a real blueberry field located in Babe, Serbia. To thoroughly assess algorithm’s performance, 

the tested instances contain 10, 50, and 100 randomly generated SSPs. They are denoted 

UGV10, UGV50, and UGV100, respectively. Each problem instance is solved 50 times with 

randomly selected starting UGV locations around the field. Table 1 shows the statistics 

regarding the cost improvement and execution time for each instance. The tests were conducted 

on Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz  with 16 GB RAM.  

 
Table 1. Developed algorithm solution statistics, i.e., average, minimal, and maximal solution improvement and 

time are shown for each problem instance. 

 

Instance 
Average 

impr. [%] 

Max. impr. 

[%] 

Min. impr. 

[%] 

Avg. sol. 

time [s] 

Max. sol. 

time [s] 

Min. sol. 

time [s] 

UGV10 16.47 22.58 12.52 81.43 90.91 79.67 

UGV50 12.47 18.63 4.79 395.39 405.53 387.67 

UGV100 7.76 11.22 4.26 759.68 776.95 749.06 

 

5 CONCLUSIONS AND FUTURE RESEARCH STEPS 

 

The evaluation of the current algorithm has demonstrated its suitability for the intended 

purpose of UGV routing optimisation. With the smaller number of SSPs, the cost improvement 

is significant while the running time is satisfactory. Moreover, the experiment results indicate 

that the running time increases linearly with the problem size, which is the same time 

complexity as obtained by the k-opt implementation by Helsgaun [3]. Furthermore, the current 

algorithm implementation uses only one CPU thread, which leaves space for further 

performance improvement. 

In our future research, we intend to estimate the optimality gaps obtained by the current 

solution algorithm. Additionally, we aim to develop algorithms based on GA and hybrid 

approaches, as suggested in [5], and compare their performance with the presented algorithm 

in the observed case of UGV routing optimisation.  
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