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1 Introduction

Most of the farm field operations are scheduled quite imprecisely or, even worse, determined ad
hoc. Following intuitionally and empirically handcrafted schedules can lead to suboptimal harvest
time. As a consequence, it can affect harvest effectiveness by reducing the total amount of yield
and increasing the amount of unnecessary waste, as well as its efficiency by imposing a longer
harvest horizon than required or by making harvest intensity and labor force engagement unevenly
distributed over the horizon.

Results from our previous study [1] suggest that by proper planting and harvest scheduling,
there is room for significant improvement in waste reduction and consistent harvest intensity. Our
study was inspired by the Syngenta Crop Challenge in Analytics 2021 (the challenge) [2]. The
aim of the challenge was to determine desired planting and harvest schedule for the farm field
whose crop is divided into populations. Each population represents a management unit that will be
treated individually and uniformly in any aspect. For each population, the allowed planting time
window and expected yield are known. Afterward, based on the weather forecast, it is possible to
derive time-window during which the population should be harvested. Finally, we have defined a
limit on the amount of weekly harvested yield that can be adequately processed and stored while
any surplus beyond that would be wasted.

Some other papers discuss slightly different solution approaches for a problem proposed at
the Challenge [3–5]. However, all proposed decision frameworks have certain specificities. They
all incorporate integer-linear problems (ILP) solved by exact off-the-shelf solvers and the multi-
objective nature of the problem has been treated either by aggregation of multiple objectives as
a weighted sum or by iterative or sequential exploitation of models as part of a broader decision
framework.

Here, we simplify the optimization process and approach it with a single run of a multi-objective
metaheuristic method. This enables us to produce and analyze Pareto fronts of solutions with vari-
ous effectiveness and efficiency and to deal with instances unmanageable for exact solvers. The opti-
mization problem has been approached with two, in some sense complementary, metaheuristics. We
examined adaptive large neighborhood search (ALNS) [6] as a model-driven single-solution-based
metaheuristic and non-dominated sorting genetic algorithm II (NSGA-II) [7] as a population-based
data-driven metaheuristic. We provide our preliminary results, which show that ALNS consistently
and significantly outperforms NGSA-II.

2 Methodology

Given a set of populations P and a set of weeks comprising harvesting horizon W , our problem
formulation is as follows:

F1 =
∑
w∈W

|qw − C| (1)

F2 = |{w ∈ W : qw > 0}| (2)
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qw =
∑
p∈P

hqp · 1w([tp]), ∀w ∈ W (3)

ep ≤ tp ≤ lp, ∀p ∈ P (4)

The first objective function F1 expresses the effectiveness of a schedule and it is calculated as
the sum of deviations between weekly harvested quantities qw and the stated storage capacity C.
The second objective function F2 expresses the schedule efficiency and it is equal to the number
of working weeks, i.e. the number of weeks with a positive harvested quantity.

Constraints (3) are used to determine weekly harvested quantities qw, for each week w ∈ W ,
based on selected harvesting time tp for a population p ∈ P and its expected yield hqp. Since tp
takes real values, we consider that a population p would be harvested in a week w if an indicator
function 1w([tp]) yields 1, i.e. if a rounded value of tp equals to w. Constraints (4) ensure that each
population p ∈ P is harvested within its feasible time window [ep, lp].

We solved the proposed problem using two well-known metaheuristics, ALNS and NSGA-II.
For the ALNS application, we designed five domain-specific neighborhood operators, where each
of them was tailored to favor a particular desirable characteristic of the schedule. Operator one
is a rebalancing operator designed to reschedule populations from highly stressed weeks to least
stressed weeks. Operator two is a stability operator designed to equalize the amount of harvested
quantities between consecutive weeks. Operator three is an emptying operator which finds two
consecutive weeks with the lowest total harvested quantity and empties the less stressed one into
another one. Operator four is also an emptying operator. This operator will empty a week which is
preceded by an already emptied one. Operator five is a capacity operator rescheduling populations
for weeks that are loaded over storage capacity C.

As for the second metaheuristic, we used real-coded constrained NSGA-II without any modi-
fications. We experimented with two different ways of initial population generation. By our first
approach, called random, the initial population is created by uniformly sampling value for each
gene tp inside its allowed time window [ep, lp]. By our second approach, called smart, we select
our initial population as a subset of 100 solutions out of 500 initially produced distinct solutions
generated by the previous run of the ALNS for the same case.

3 Results

We synthesized 20 different case studies, which may have n ∈ {500, 1000, 2000, 3000, 4000} pop-
ulations and planning horizon l ∈ {26, 52, 78, 104} weeks long. For each case study, we run each
algorithm 25 times. For each case, we combined all solutions nondominated individually per opti-
mization run and derive the overall Pareto front of all solutions on the case level.

Figures 1 and 2 show combined Pareto fronts for cases with the highest and the lowest ratio
between the number of populations and the duration of the planning horizon. Solutions produced
by ALNS are depicted as ▲, or ■ if they are overall nondominated. Individually nondominated
solutions produced by NSGA-II are depicted as x for random initialization or ⋆ for smart initial-
ization. Bounding boxes of overall nondominated solutions are presented as red rectangles. Figures
emphasize a strong dominance of ALNS over the NSGA-II approach. All overall nondominated
solutions are produced by ALNS. NSGA-II has never produced any solution with a relatively low
F2 objective value and a significant portion of individually optimal solutions produced by NSGA-II
turns out to be out of the bounding box surrounding overall nondominated solutions. On the other
side, individually nondominated solutions produced by ALNS are close to overall nondominated
solutions.

The presented results are consistent with all other our results. For each case, all overall non-
dominated solutions have been produced solely by ALNS. Pareto fronts generated by ALNS are
firmly consistent from run to run and they converge relatively fast, in about 10000 to 15000 itera-
tions. On the other side, all individually nondominated solutions produced by NSGA-II are from
the first generation, which indicates that populations don’t improve themselves by evolution at all.
That also explains why smart initialization strategy provides better results than random strategy
since all solutions from its first generation are actually previously produced by the ALNS.
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ALNS dominance over the NSGA-II is particularly obvious regarding the F2 objective func-
tion, where NSGA-II performed poorly all the time. That is in accordance with our most recent
experimental results, which are beyond the scope of this paper. Results indicate that offsprings’ F2
objective values consistently degrade in comparison to parents’ until they finally reach a certain
poor quality standard where their values retain.

Fig. 1: Pareto front for n = 4000 and l = 26 Fig. 2: Pareto front for n = 500 and l = 104

4 Conclusion

In this paper, we outlined a bi-objective formulation of the Crop Plant Scheduling Problem pro-
posed in our previous work [1]. We adapted two metaheuristics to solve the problem. Our ex-
perimental results indicate a very strong dominance of ALNS over NSGA-II. Since those results
are quite indicative, our future work shall be focused on gaining deeper insights into the reasons
for such dominance. More precisely, we shall analyze the structure of the F2 objective function
in relation to the operators integrated into the ALNS and NSGA-II and derive assumptions on
what makes ALNS capable and NSGA-II incapable to provide good Pareto fronts for such a simple
objective function.
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