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Abstract

Reductions in vascular function during a SCUBA dive – due to hyperoxia-induced

oxidative stress, arterial and venous gas emboli and altered endothelial integrity –may

also extend to the cerebrovasculature following return to the surface. This study aimed

to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive

to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the

dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and

vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the

middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial

Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e.

FIO2
, 0.10) and hyperoxia (i.e. FIO2

, 1.0); and (3) neurovascular coupling (NVC; regional

CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular

reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive

(all P > 0.05); however, there were subtle changes in other cerebrovascular metrics

post-dive, including reductions in ICA (−13 ± 8%, P = 0.003) and VA (−11 ± 14%,

P=0.021) shear rate, lower ICAv (−10±9%,P=0.008) andVAv (−9±14%,P=0.028),

increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%,

P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these

changes did not translate into any functional changes in cerebrovascular reactivity to

hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyper-

baria during longer, deeper, colder and/or repetitive SCUBA dives would provoke

changes to the cerebrovasculature requires further investigation.
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1 INTRODUCTION

Recreational participation in diving with a self-contained under-

water breathing apparatus (SCUBA) presents ubiquitous physio-

© 2020 The Authors. Experimental Physiology© 2020 The Physiological Society

logical stressors such as hyperoxia, hyperbaria, exercise and

water temperature. Cerebral blood flow (CBF) regulation is an

integrative process principally mediated via alterations in cerebral

metabolism, arterial blood gases and blood pressure (reviewed
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in Willie, Tzeng, Fisher, & Ainslie, 2014). Throughout SCUBA diving,

reductions in cardiac output, diffusing lung capacity and pulmonary gas

exchange (Dujic, 2005), as well as hyperoxia-induced vasoconstriction

(Wunderlich et al., 2017), likely contribute to attenuated systemic

vascular blood flow. As a consequence, SCUBA-related reductions in

peripheral vascular function (Lambrechts et al., 2013; Marinovic et al.,

2011) – due to hyperoxia-induced oxidative stress (Obad et al., 2010;

Wang et al., 2020), arterial and venous gas emboli (Barak et al., 2015),

and altered endothelial integrity (Bilopavlovic et al., 2013) – have been

reported during typical diving profiles (e.g. 18–30 m sea water with

30–47min bottom time). Emerging data indicate that adverse changes

in vascular function may also extend to cerebrovascular changes

post-SCUBA dive (Barak et al., 2016, 2018).

Recent studies indicate intra-cranial cerebral blood velocity (CBV)

is increased following 47 min exposure to hyperoxia during a SCUBA

dive (Barak et al., 2016, 2018). This transient increase in CBV is

perhaps attributable to free radical-mediated reductions in down-

stream resistance (i.e. vasodilatation of pial arteries) provoked via

elevations in oxidative stress (Leffler et al., 1990; Rosenblum, 1983;

Wei, Christman, Kontos, & Povlishock, 1985) as antioxidant treatment

abolishes the temporary elevation in CBV following a SCUBA dive

(Barak et al., 2018). Conversely, lower nitric oxide bioavailability

following a SCUBA dive (Theunissen et al., 2013) may contribute

to reductions in resting CBF regulation (Mashour & Boock, 1999)

via cerebral vasoconstriction (Kety & Schmidt, 1948; Lambertsen

et al., 1953; Omae et al., 1997; Visser, Van Hulst, Wieneke, & Van

Huffelen, 1996; Watson, Beards, Altaf, Kassner, & Jackson, 2000).

Additionally, previous animal experiments (Faraci & Breese, 1993;

Meng, Tobin, & Busija, 1995; Yang & Iadecola, 1997) and recent

evidence in humans (Hoiland et al., unpublished data) indicate neuro-

vascular coupling (NVC; regional CBF response to local increases in

cerebral metabolism) is regulated in part by nitric oxide-mediated

signalling; therefore, conceivably higher oxidative stress following the

SCUBA dive (Modun et al., 2012; Obad et al., 2010) may inactivate

nitric oxide (Demchenko, Boso, Bennett,Whorton, & Piantadosi, 2000;

Elayan, Axley, Prasad, Ahlers, & Auker, 2000; Zhang, Sam, Klitzman,

& Piantadosi, 1995) and reduce NVC. As such, the balance between

countervailing pial arteriole dilatation and reductions in nitric oxide

bioavailability following exposure to hyperoxia experienced during a

SCUBA dive will likely dictate resting CBF regulation andNVC.

Notably, two gaps are apparent with respect to CBF regulation

following a single SCUBA dive: (1) validation of indirect surrogate

measures of CBF (e.g. transcranial Doppler ultrasound derived CBV) to

accurately assess cerebral vasomotor changes; and (2) characterization

of the functional responsiveness of the cerebral vasculature following

a SCUBA dive. Particularly, assessment of cerebrovascular function

– inclusive of its vascular reactivity (Willie et al., 2012) and neuro-

vascular coupling (Phillips, Chan, Zheng, Krassioukov, & Ainslie,

2016) – is needed to provide better insight into the influence of a

SCUBA dive on cerebrovascular health. To address these gaps, we

performed a comprehensive cerebrovascular assessment before and

immediately following a single SCUBA dive (18 m sea water with

47 min bottom time) with the following measures: (1) resting CBF

New Findings

∙ What is the central question of this study?

What are the characteristics of cerebral blood flow

(CBF) regulation following a single SCUBA dive to a

depth of 18m seawater with a 47min bottom time.

∙ What is themain finding and its importance?

Acute alterations in CBF regulation at rest,

including extra-cranial vasodilatation, reductions in

shear patterns and elevations in intra-cranial blood

velocity were observed at rest following a single

SCUBA dive.

These subtle changes in CBF regulation did

not translate into any functional changes in

cerebrovascular reactivity to hypoxia or hyper-

oxia, or neurovascular coupling following a single

SCUBA dive.

regulation of the internal carotid artery (ICA), vertebral artery (VA),

middle and posterior cerebral arteries (MCAv, andPCAv, respectively);

(2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. FIO2
,

0.10) and hyperoxia (i.e. FIO2
, 1.0) to index CBF regulation via arterial

oxygen changes; and (3) NVC (regional CBF response to local increases

in cerebral metabolism). We hypothesized the following: (1) resting

global CBF will be unaffected following a single SCUBA dive; (2)

the SCUBA dive will attenuate cerebrovascular reactivity to hypo-

xia post-dive; and (3) the NVC response will be reduced post-SCUBA

dive.

2 METHODS

2.1 Ethical approval

Following verbal and written explanation of the study, written

informed consent was acquired. This study was approved by the

University of Split School of Medicine Institutional Ethics Committee

(reg. no. 2181-198-03-04-14-0042) and all procedures were

conducted in accordance with the Declaration of Helsinki, except

registration in a database.

2.2 Participants

Eleven healthy male divers (39 ± 9 years, 186 ± 6 cm, 88 ± 12 kg)

participated in the study. Diving experience ranged from 4 to 24 years

with 100 to 2900 dives. Participants had no history of cerebrovascular,

cardiovascular or respiratory disease.
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2.3 Experimental protocol

The studywas performed at amilitary base of theCroatianNavy Force.

The divers were asked to abstain from vigorous physical activity and

diving for 48 h before the study. All divers performed a single dive at a

depth of 18 m sea water with a 47 min bottom time and 2 min ascent

to surface (9 m sea water min−1) without any decompression stops;

compressed ambient air was used as the breathing gas (i.e. inspired

PO2
approx. 60 kPa). The divers performed swimming of moderate

intensity throughout the dives. Sea water temperature at the bottom

was approximately 17◦C. Each diver was accompanied by a safety

diver, and both of themwere equippedwith a diving computer (Uwatec

Galileo sol, Johnson Outdoors, Inc., Racine, WI, USA). Participants

completed a cerebrovascular assessment pre- and post-SCUBA

dive as described below. Following the SCUBA dive, participants

were re-instrumented immediately and resting measurements were

performed starting at approximately 10 min from return to the

surface. Experimental tests were performed supine in the following

order prior to and following the SCUBAdive: (1) restingCBF; (2) neuro-

vascular coupling (NVC); (3) cerebrovascular reactivity to hypoxia and

hyperoxia.

2.4 Cerebral blood flow

Right ICA (n = 8) and left VA (n = 10) were assessed with ipsilateral

measures of middle (MCAv) and posterior (PCAv) cerebral artery

blood velocities, respectively (with the exception of left ICA (n = 2)

and right VA (n = 1) for adequate image quality). Transcranial

Doppler (TCD) ultrasound (Spencer Technologies, Seattle, WA, USA)

was used to assess cerebral blood velocity (CBV), as an index of

CBF, in the right MCA and left PCA. The 2 MHz TCD probes

were attached to a specialized headband (model M600 bilateral

head frame, Spencer Technologies), and each vessel was insonated

through the trans-temporal window, using previously described

location and standardization techniques (Willie et al., 2011). The ICA

and VA blood velocity and vessel diameter were measured using a

10MHzmultifrequency linear arrayDuplex ultrasound (Terason 3000;

Teratech, Burlington, MA, USA) using previously described location

and standardization techniques (Thomas, Lewis, Hill, & Ainslie, 2015).

Pulse-wave mode was used to measure peak blood velocity, while

arterial diameter was concurrently measured using B-mode imaging.

The ICA blood velocity and vessel diameter were measured ≥1.5 cm

from the carotid bifurcation to avoid any turbulent or retrograde

flow patterns; and the VA blood velocity and vessel diameter were

measured between C4 and C5 or C5 and C6. The vessel location was

decided on an individual basis to allow for reliable image acquisition,

with the same location repeated within participants and between

trials. The insonation angle (60◦) was unchanged throughout each test

and, following acquisition of the first ultrasound image, there was no

alteration of B-mode gain or dynamic range to avoid changes in arterial

wall brightness/thickness. Our within-day coefficients of variation in

the current study for ICA diameter, velocity and blood flowwere 2.8%,

5.5% and 7.2%, respectively.

2.5 Cerebrovascular O2 reactivity

The ICA blood flow (Q̇ICA) response to hypoxia and hyperoxia was

assessed pre- and post-SCUBA dive. Participants were instrumented

with a two-way non-rebreathing valve (Hans Rudloph masks M and

L, two-way valve; Hans Rudolph, Shawnee, KS, USA). A Douglas bag

filled with either 10% O2 or 100% O2 was fitted with a three-way

valve to allow the breathing circuit to alternate between ambient air

and the contents of the Douglas bag. Following a 1 min resting base-

line (BSL), participants breathed the appropriate O2 mixture (i.e. 10%

O2 vs. 100% O2) for 10 min. The order of these reactivity tests was

counter-balanced between participants and approximately 5–10 min

was allowed for washout between conditions.

2.6 Neurovascular coupling

The NVC test evoked selective changes in PCAv in response to

activation of the visual cortex, and the MCAv allowed for regional

comparisons. Following 2 min of rest, five cycles of repeated,

alternating, 40 s exposure to eyes-closed, and then 20 s eyes-open

with reading was completed, according to standardized guidelines

(Phillips et al., 2016). The researcher confirmed that the participant’s

eyes were closed and open during the respective trials. The PCAv and

MCAv response to five cycles were exported on a breath-by-breath

(respiratory) and beat-by-beat (cardiovascular and cerebrovascular)

basis, cubic spline interpolated at 5Hz, and used for data analysis using

custom software developed in MATLAB (TheMathWorks, Natick, MA,

USA) (Phillips et al., 2016). TheNVC test provides an index ofmetabolic

andmyogenic regulation that is normalized to any temporal changes in

arterial blood gases (Phillips et al., 2016).

2.7 Cardiorespiratory measures

Heart rate (HR) was continuously measured using a lead-II electro-

cardiogram (ECG; BioAmp ML132, ADInstruments, Colorado Springs,

CO, USA). Beat-by-beat blood pressure was acquired using non-

invasive finger photoplethysmography (Finometer PRO, Finapres

Medical Systems, Amsterdam, Netherlands) and was calibrated prior

to data collection using the return-to-flow function. The Finometer

blood pressure waveform was averaged to calculate MAP after

calibrating values to the average of two manual brachial blood

pressure measurements (Welch Allyn, Hillrom, Chicago, IL, USA;

aneroid sphygmomanometer). Stroke volume (SV) was estimated

from the blood pressure waveform (Beat Scope, Finapres Medical

Systems). Cardiac output (CO) was calculated by multiplying HR and

SV. Peripheral oxygen saturation (SpO2
) was measured using pulse

oximetry (VacuMed, Ventura, CA, USA). Lastly, breath-by-breath CO2

and O2 were sampled using a calibrated gas analyser (model ML206,

ADInstruments), and the pressure of end-tidal CO2 and O2 (i.e. PETCO2

and PETO2
, respectively) was calculated in LabChart (ADInstruments)

using peak detection analysis with correction for daily barometric

pressure.
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2.8 Data analyses

All cardiorespiratory measures were sampled continuously at

1 kHz using an analog-to-digital converter (Powerlab, 16/30;

ADInstruments) and data were interfaced with LabChart (Version

7.1) and analysed offline. A 60 s average of resting CBF values (e.g.

Q̇ICA, Q̇VA, MCAv, PCAv), as well as 60 s before the onset of NVC

and cerebrovascular reactivity were used as resting BSL values. The

change in Q̇ICA from BSL to the last 3 min of exposure was used to

index cerebrovascular reactivity. Duplex ultrasound recordings were

captured and saved for offline analysis using custom edge-detection

and wall tracking software (BloodFlow Analysis, Chris Reed, Perth,

AU; version 5.1). This analysis method utilizes integration of diameter

and velocity traces to calculate mean beat-to-beat flow at 30 Hz

independent of observer bias; it has been validated and is described in

detail elsewhere (Woodman et al., 2001).

Blood flowwas calculated as:

Q̇ = peak envelope blood velocity∕2 ×
[
𝜋(0.5 × diameter)

2
]
× 60.

Global cerebral blood flow (CBF) was estimated as:

Global CBF = 2 ×
(
Q̇ICA + Q̇VA

)
.

Mean shear rate was calculated as:

Shear rate = 4 × peak envelope blood velocity∕arterial diameter.

Cerebrovascular conductance (CVC) was calculated as: global CBF,

Q̇ICA, Q̇VA, MCAv or PCAv/MAP.

2.9 Statistical analyses

All cerebrovascular and haemodynamic variables at rest were

compared using one-way, paired Student’s t test (pre- vs. post-SCUBA

dive). Absolute Q̇ICA, MCAv and PCAv were plotted against either

SpO2
(hypoxia) or PETO2

(hyperoxia) using linear regression to calculate

individual cerebrovascular reactivity slope values. Additionally, a

linear mixed model with fixed effects of time (pre- vs. post-SCUBA

dive) and either SpO2
(hypoxia) or PETO2

(hyperoxia) with PETCO2

as a covariate was used to calculate estimates of fixed effects for

group cerebrovascular reactivity averages (Atkinson et al., 2011). A

Bonferroni correction was applied for multiple comparisons when

significant interactions were detected. All NVC variables (PCAv,

MCAv, PCACVC, MCACVC, MAP, PETCO2
) were compared as absolute

peak response, change in absolute peak response from BSL, time to

peak response, average absolute response, average change in absolute

response, relative peak response, and average relative peak response

using one-way, paired Student’s t test (pre- vs. post-SCUBA dive).

Statistical analyses were performed using SPSS Statistics Version 22.0

(IBM Corp., Armonk, NY, USA) and statistical significance was set at

P< 0.05.

3 RESULTS

3.1 Cerebrovascular and haemodynamic
parameters

Overall, global CBF was unchanged pre- vs. post-SCUBA (P = 0.087;

Table 1). Following the SCUBA dive, ICA diameter was increased by

+4 ± 5% (P = 0.017; Table 1 and Figure 1b) whereas blood velocity

was reduced by −10 ± 9% (P = 0.008; Table 1 and Figure 1c); as a

result, Q̇ICA was unchanged (−1 ± 17%, P = 0.384; Table 1). The VA

blood velocity was also reduced by −9 ± 14% (P = 0.028; Table 1 and

Figure 1c) following the SCUBA dive but diameter was not different

pre- vs. post-SCUBA dive (+2 ± 8%, P = 0.175; Table 1 and Figure 1b);

therefore, Q̇VA was also unchanged (−5 ± 19%, P = 0.148; Table 1).

Shear rates were reduced following the SCUBA dive for both ICA

(−13 ± 8%, P = 0.003; Table 1 and Figure 1a) and VA (−11 ± 14%,

P = 0.021; Table 1 and Figure 1a). As MAP was not different pre- and

post-SCUBA dive (P = 0.211; Table 2), both ICACVC and VACVC were

unaltered following SCUBA (P = 0.373 and P = 0.167, respectively;

Table 1). Both PCAv (+10 ± 19%, P = 0.047; Table 1 and Figure 1d)

and PCACVC (+8 ± 16%, P = 0.049; Table 1) were elevated following

the dive, whereas MCAv and MCACVC tended to be higher, but were

not significantly different (P = 0.051 and P = 0.072, respectively;

Table 1 and Figure 1d). Both SpO2
and PETO2

were not different pre-

vs. post-SCUBA dive (P = 0.432 and P = 0.252, respectively; Table 2).

Participants were relatively hypocapnic following the SCUBA dive as

indicated by a −1.4 ± 2.4 mmHg reduction in PETCO2
(P = 0.037;

Table 2). Lastly, HR (−9 ± 10%, P = 0.008; Table 2), SV (−10 ± 13%,

P = 0.017; Table 2) and CO (−19 ± 12%, P = 0.001; Table 2) were

reduced following the SCUBA dive.

3.2 Cerebrovascular O2 reactivity

Hypoxia increased Q̇ICA both pre- and post-SCUBA dive (hypoxia

effect: P = 0.008), and although Q̇ICA was lower throughout this

response following the SCUBA dive (dive effect: P = 0.001), the

reactivity slopes (i.e. ΔQ̇ICA vs. ΔSpO2
) were not different between

trials (interaction effect: P = 0.677; Figure 2a). This Q̇ICA response

was evoked via slight vasodilatation (BSL: 5.22 ± 0.57 mm vs. Hypo-

xia: 5.33± 0.57mm, hypoxia effect: P= 0.037) with no change in blood

velocity (BSL: 39.68 ± 9.95 cm s−1 vs. Hypoxia: 41.63 ± 9.95 cm s−1;

hypoxia effect: P = 0.083) throughout the hypoxia trials. Further,

the vasodilatation reactivity slope (i.e. ΔICA diameter vs. ΔSpO2
)

was not different between trials (interaction effect: P = 0.542). The

ICA shear rate, ICACVC, MCAv, PCAv, MCACVC and PCACVC hypo-

xic reactivities did not change pre- or post-SCUBA dive (interaction

effects: all P > 0.05, respectively). Including PETCO2
as a covariate did

not significantly influence the Q̇ICA (P = 0.904; Figure 2c) or ICACVC

reactivity slopes (P= 0.133).

Hyperoxia reduced Q̇ICA both pre- and post-SCUBA dive (hyperoxia

effect: P < 0.001); however, there was no difference in this response

between trials (dive effect: P = 0.449) or with respect to the reactivity
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TABLE 1 Cerebrovascular parameters pre- and post-SCUBA dive at rest

Pre-SCUBA Post-SCUBA Sample size P

ICA

Diameter (mm) 5.01 ± 0.48 5.22 ± 0.59* 9 0.017

Velocity (cm s−1) 43.95 ± 12.07 38.98 ± 8.12* 9 0.008

Q̇ (ml min−1) 259 ± 70 255 ± 77 9 0.384

Shear rate (s−1) 356 ± 113 302 ± 74* 9 0.003

CVC (ml min−1 mmHg−1) 2.88 ± 0.89 2.83 ± 0.89 9 0.373

VA

Diameter (mm) 4.09 ± 0.53 4.19 ± 0.63 10 0.175

Velocity (cm s−1) 25.39 ± 7.36 22.53 ± 5.54* 10 0.028

Q̇ (ml min−1) 103 ± 43 96 ± 38 10 0.148

Shear rate (s−1) 251 ± 77 218 ± 58* 10 0.021

CVC (ml min−1 mmHg−1) 1.13 ± 0.53 1.07 ± 0.45 10 0.167

Global CBF (ml min−1) 721 ± 227 673 ± 185 8 0.087

MCAv (cm s−1) 59.99 ± 12.39 62.06 ± 12.66 11 0.051

MCACVC (cm s−1 mmHg−1) 0.66 ± 0.15 0.69 ± 0.17 11 0.072

PCAv (cm s−1) 39.34 ± 10.70 43.42 ± 13.82* 10 0.047

PCACVC (cm s−1 mmHg−1) 0.44 ± 0.13 0.49 ± 0.17* 10 0.049

Data aremean± SD. Values shown in bold are considered statistically significant. CBF, cerebral blood flow; CVC, cerebrovascular conductance; ICA, internal

carotid artery; MCAv, middle cerebral arterymean velocity; PCAv, posterior cerebral arterymean velocity; Q̇, flow; VA, vertebral artery.
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F IGURE 1 Acute alterations in cerebrovascular regulation at rest following a SCUBA dive. (a) Shear rate in the internal carotid artery (ICA)
and vertebral artery (VA). (b) Diameter of the ICA and VA. (c) Blood velocity in the ICA and VA. (d) Blood velocity in themiddle cerebral artery
(MCA) and posterior cerebral artery (PCA). Following a SCUBA dive subtle reductions in ICA and VA shear patterns (a) and blood velocities (c) as
well as elevations in arterial diameter (b) and intra-cranial blood velocities (d) were observed at rest. Data are individual responses with respective
group average lines for ICA: n= 9; VA: n= 10;MCA: n= 11; PCA: n= 10
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TABLE 2 Haemodynamic parameters pre- and post-SCUBA dive
at rest

Pre-SCUBA Post-SCUBA Sample size P

SpO2
(%) 98.9 ± 0.6 98.8 ± 0.8 11 0.432

PETO2
(mmHg) 102.9 ± 5.2 101.6 ± 4.5 11 0.252

PETCO2
(mmHg) 38.9 ± 2.3 37.4 ± 2.4* 11 0.037

MAP (mmHg) 90 ± 5 91 ± 6 11 0.211

SBP (mmHg) 120 ± 7 121 ± 10 11 0.315

DBP (mmHg) 75 ± 6 76 ± 5 11 0.238

HR (bpm) 63 ± 6 58 ± 8* 11 0.008

SV (ml) 123 ± 20 109 ± 15* 11 0.017

CO (l min−1) 7.8 ± 1.6 6.3 ± 1.1* 11 0.001

Data are mean ± SD. Values shown in bold are considered statistically

significant. *P<0.05pre- vs. post-SCUBA.CO, cardiac output;DBP, diastolic
blood pressure; HR, heart rate; MAP, mean arterial pressure; PETCO2

, end-

tidalPCO2
;PETO2

, end-tidalPO2
; SBP, systolic blood pressure; SpO2

, peripheral

oxygen saturation; SV, stroke volume.

slopes (interaction effect: P = 0.405; Figure 2b). This response was

perhaps inpartmediatedby ICAvasoconstriction (BSL: 5.13±0.54mm

vs. Hyperoxia: 4.97 ± 0.54 mm, hyperoxia effect: P = 0.001) as

well as a reduction in blood velocity (BSL: 41.53 ± 8.36 cm s−1 vs.

Hyperoxia: 38.77 ± 8.36 cm s−1; hyperoxia effect: P = 0.008)

throughout the hyperoxia trials. Further, the vasoconstriction

reactivity slope (i.e. ΔICA diameter vs. ΔPETO2
) was not different

between trials (interaction effect: P = 0.219). The ICA shear rate,

ICACVC,MCAv, PCAv, MCACVC and PCACVC response to hyperoxia did

not change pre- or post-SCUBA dive (interaction effects: all P > 0.05).

The Q̇ICA and ICACVC were reduced to the same extent pre- vs. post-

SCUBA (hyperoxia effects: P < 0.001 and P = 0.001, respectively).

However, covariate analysis for PETCO2
(P = 0.012 and P = 0.023,

respectively) revealed no influence of hyperoxia on the reduction in

CBF (i.e. the decrease in CBFwas driven by hypocapnia); this againwas

not different pre- vs. post-SCUBA (interaction effects: P = 0.320 and

P= 0.519, respectively; Figure 2d).

3.3 Neurovascular coupling

The absolute peak response for PCAv and PCACVC tended to be higher

following SCUBA dive (PCAv 44.71 ± 15.14 vs. 48.60 ± 16.71 cm s−1;

and PCACVC 0.48 ± 0.18 vs. 0.52 ± 0.19 cm s−1 mmHg−1; both

P = 0.058); however, this was likely due to higher resting PCAv

following SCUBA (Table 1 and Figure 1d). Indeed, when expressed as

an absolute peak change from BSL, there was no influence of SCUBA
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F IGURE 2 Cerebrovascular reactivity to hypoxia and hyperoxia pre- and post-SCUBA dive. (a) Internal carotid artery (ICA) blood flow vs.
peripheral oxygen saturation (SpO2

) during normoxia andwithin the last 3min of exposure to 10%O2 (hypoxia). (b) Internal carotid artery (ICA)
blood flow vs. pressure of end-tidal oxygen (PETO2

) during normoxia andwithin the last 3min of exposure to 100%O2 (hyperoxia). (c) Individual
hypoxic reactivity slopes (i.e. relative change in ICA flow/SpO2

); there was no influence of end-tidal PCO2
(PETCO2

) as a covariate (bar graph). (d)
Individual hyperoxic reactivity slopes (i.e. relative change in ICA flow/PETO2

); covariate analysis for PETCO2
revealed no influence of hyperoxia on

the reduction in Q̇ICA presented in (b) (i.e. the decrease in Q̇ICA was driven by hypocapnia within both trials). For (c,d), the bar graphs represent
average slope values corrected for PETCO2

as a covariate. Data aremeans± SD for hypoxia: n= 7; hyperoxia: n= 6
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F IGURE 3 Neurovascular coupling response of the posterior cerebral artery cerebrovascular conductance (PCACVC) pre- and post-SCUBA
dive. (a) Absolute change in PCACVC. (b) Individual data with respective group averages for the absolute change in peak and average responses of
PCACVC. At time 0 s there is cerebral activation during ‘eyes-open’ following resting ‘eyes-closed’. Absolute PCACVC was elevated following the
SCUBA dive; however, there is no difference in this response when expressed as an absolute change score. Data aremeans± SD for n= 7

dive on the absolute peak PCAv response (pre:+8.81± 3.46 cm s−1 vs.

post: +8.41 ± 3.39 cm s−1, P = 0.350). Additionally, the PCAv average

absolute change from BSL was not different following the SCUBA dive

(pre: +2.86 ± 1.61 cm s−1 vs. post: +2.91 ± 1.39 cm s−1, P = 0.457),

and this was consistent with the PCACVC results (Figure 3a,b). The

PCAv relative peak response was also not different pre- vs. post-

SCUBAdive (24.73±6.53% vs. 21.53±5.16%, respectively;P=0.219),

and this response was unaltered when expressed as PCACVC. The

average relative response for PCAv and PCACVC was not affected by

the SCUBA dive (P = 0.451 and P = 0.488, respectively). Time to

peak response was lower (i.e. faster) post-SCUBA dive for PCAv (pre:

14.94± 3.44 s vs. post: 12.69± 4.15 s, P= 0.034).

4 DISCUSSION

The main findings of this study indicate that following a 47 min

SCUBA dive to 18 m sea water: (1) although global CBF was not

affected, subtle reductions in ICA and VA shear patterns as well as

elevations in intra-cranial blood velocities were observed at rest; (2)

cerebrovascular reactivity to both hypoxia and hyperoxia was pre-

served; and (3) the NVC response was maintained. These findings

indicate that a single 47 min SCUBA dive to 18 m sea water does

not acutely affect functional cerebrovascular regulation as indexed by

measures of vascular reactivity to hypoxia and hyperoxia as well as

NVC.

4.1 Cerebrovascular regulation at rest following a
SCUBA dive

The approximately 10% increase in PCAv observed in the current

study is consistent with the 8–10% elevation in PCAv reported in

two separate studies by Barak et al. (2016, 2018) following a single

SCUBA dive with the same dive profile; that is, 18 m sea water

with a 47 min bottom time. Further, our data extend these findings

and reveal subtle alterations in changes in extra-cranial blood flow

patterns, including vasodilatation and reductions in shear rate. The

increases in intra-cranial CBV are perhaps explained by hyperoxia-

induced cerebral vasoconstriction due to (1) compensatory increases

in respiration and resultant reductions in PCO2
(Eldridge&Kiley, 1987);

and/or (2) increased reactive oxygen species (ROS) (Modunet al., 2012;

Obad et al., 2010) and related reductions in nitric oxide bioavailability

(Theunissen et al., 2013) and cerebralmetabolism (Mattos et al., 2019);

and such changes are reflected in additional stresses of diving (e.g.

high hydrostatic pressure, water temperature, exercise) independent

of hyperoxia per se (Barak et al., 2018). Indeed, the previously reported

transient elevations in CBV observed 30min following a single SCUBA

dive were acutely restored by 60 min post-dive (Barak et al., 2016,

2018); such increases in CBV were suppressed with antioxidant

administration and were not apparent during exposure to matched

duration 60% O2 breathing experienced during the dive (Barak et al.,

2018). Taken together, these consistent findings indicate that subtle

increases in intra-cranial CBV following a single SCUBA dive are: (1)

transient and normalized within 60 min; (2) unrelated to hyperoxia per

se; and (3) not sufficient to alter cerebrovascular regulation to hypoxia,

hyperoxia or NVC.

The reasons for the alterations in extra-cranial blood flow patterns

are not clear but may relate to hyperoxia-induced endothelium-

mediated regulation of CBF as evidenced by reductions in ICA

and VA shear rate following the SCUBA dive (Attaye et al., 2017;

Brueckl et al., 2006). Further, the attenuation in ICA and VA shear

rates is likely influenced by the observed 19% decrease in cardiac

output; these data are consistent with the 17% reduction in cardiac

output 30 min following a single SCUBA dive reported by Dujic and

colleagues (2005). Additionally, we observed a small but significant

reduction in PETCO2
at rest following the SCUBA dive (−Δ1.5 mmHg);

taken together with the reported hypocapnic cerebrovascular CO2

reactivity of approximately 3–4% per mmHg reduction in PETCO2

(Hoiland, Fisher, & Ainslie, 2019), this relative hypocapnia may explain

the approximately 6.5% lower global CBF (albeit not statistically

significant; Table 1) following the SCUBA dive. This subtle reduction

in PETCO2
post-dive is paradoxical with regard to the observed 4% ICA

vasodilatation; however, it may be explained via prevailing elevations
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in ROS following a SCUBA dive (Modun et al., 2012; Obad et al.,

2010) as ROS-induced pial arteriole dilatation attenuates hypocapnia-

evoked cerebrovascular constriction (Leffler et al., 1990; Wei et al.,

1985). Further, following resurfacing from a SCUBA dive, reductions

in atmospheric pressure provoke bubble-mediated shear stress in

addition to hyperoxia-induced oxidative stress and, as such, can elicit

inflammatory vascular injuries (Madden et al., 2010; Thom et al., 2012;

2013). Lastly, recent evidence in humans suggests NVC is regulated

in part by nitric oxide mediated signalling (Hoiland et al., unpublished

data); however, conceivably higher oxidative stress following the

SCUBA dive (Modun et al., 2012; Obad et al., 2010) was not sufficient

to reduce the NVC response in the current study.

4.2 Stability in functional CBF regulation
following a SCUBA dive

Although we observed subtle alterations in CBF regulation at rest,

these changes did not translate into any functional changes in

cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular

coupling. Conversely, prospective analysis reveals that SCUBA diving

may have long-term consequences for CBF regulation (via 133Xe

single-photo emission computed tomography) dictated by water

temperature, diving frequency and maximal depth (Slosman et al.,

2004). Slosman and colleagues (2004) report that repetitive SCUBA

participation (e.g. >100 dives per year) in cold water at maximal

depths exceeding 40 m sea water has adverse effects on CBF

and neuropsychological function (e.g. speed, flexibility, and attention

performance), whereas recreational SCUBA diving in warm seas at

depths <40 m sea water does not acutely affect CBF regulation

(as per current results). Cold-induced peripheral vasoconstriction as

well as pressure-induced blood volume centralization can contribute

to increased pulmonary capillary pressure during a SCUBA dive

(Doubt, 1996; Tetzlaff et al., 2001; Wilmshurst, Nuri, Crowther, &

Webb-Peploe, 1989). Although body temperature was not measured

in the current study, previous reports indicate that participants

engaging in continuous exercise at approximately 45% V̇O2max are

able to effectively regulate normal body temperature in 15–18◦C

water (Doubt, 1991; Golden & Tipton, 1987; Roberts, Holmes, &

Doubt, 1992). As such, the relative hypocapnia observed post-

dive in the present study was likely due to exposure to hyper-

oxia rather than temperature per se; this is further supported by

the unchanged resting blood pressure post-dive indicating little to

no prevailing influence of cold-induced systemic vasoconstriction.

Notably, both the ICA and VA shear rate were reduced in the pre-

sent study following a single SCUBA dive; as such, repeated/prolonged

exposure to hyperoxia may contribute to pressure-induced reductions

in microvascular endothelial integrity following chronic participation

in SCUBA diving (Attaye et al., 2017; Brueckl et al., 2006). Whether

prolonged exposure to hyperoxia andhyperbaria during longer, deeper,

colder and/or repetitive SCUBA dives would provoke changes to

the functional responses of the cerebrovasculature requires further

investigation.

4.3 Experimental considerations

The utility of transcranial Doppler ultrasound to assess CBV as an

adequate surrogate of absolute CBF requires that the insonated

cerebral vessel diameter does not change (Ainslie & Hoiland, 2014).

As the ICA supplies both the anterior cerebral artery (ACA) and

MCA, the assumption of unity between Q̇ICA and MCA flow/velocity

is contingent on the consistent distributive relationship between the

MCA and ACA (Willie et al., 2014; Zarrinkoob et al., 2015). Likewise,

the vertebro-basilar circulation is highly anatomically complex; that

is, the VA supplies extra-cranial branches of the deep cervical

artery and inferior thyroid artery, as well as anterior and post-

erior spinal arteries, perforating branches to the medulla, and the

posterior inferior cerebellar artery before feeding the basilar artery

and PCA (Edvinsson & Krause, 2002; Nowinski et al., 2011). The

inconsistency between subtle increases in intra-cranial MCAv and

PCAv and unchanged extra-cranial Q̇ICA and Q̇VA in the present study

is in part explained by the compensatory increases in arterial diameter

coupledwith reductions in extra-cranial artery blood velocity (Table 1).

Notably, cerebrovascular reactivity of both the ICA and MCA to

acute poikilocapnic hyperoxia and hypoxia were not different prior

to or following a SCUBA dive; therefore, these data indicate that the

functional responsivenessof the cerebrovasculature to changes in end-

tidal PO2
are related within both the extra-cranial and intra-cranial

circulations prior to and following SCUBA, perhaps irrespective of

vasomotor regulation at rest. Further, the current experiment did not

include a time-control visit; therefore, the observed acute changes in

cerebrovascular regulation may not be definitively due to the SCUBA

dive intervention. Lastly, this study included healthy male recreational

divers; as such, these results may not be generalizable to females or

novice divers with less than 4 years of experience. The majority of

studies to date investigating the influence of SCUBAdiving on vascular

function have been conducted in males (Barak et al., 2015, 2016,

2018; Bilopavlovic et al., 2013; Lambrechts et al., 2013; Madden et al.,

2010; Obad et al., 2010; Theunissen et al., 2013; Thom et al., 2012,

2013); therefore, the influence of cyclical changes in sex hormones on

cerebrovascular function and health following SCUBA diving would be

an important follow-up study in females.
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