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Dietmar Pfahl · Christian Engblom ·
Jarno Kyykka · Kerli Rungi · Carolina
Palomeque · Jaroslav Spisak · Markku
Oivo · Natalia Juristo

the date of receipt and acceptance should be inserted later

A. Santos, I. Karac and M. Oivo
University of Oulu, Finland
E-mail: {adrian.santos.parrilla,itir.karac,markku.oivo}@oulu.fi

S. Vegas, O. Dieste and N. Juristo
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Abstract Context : Test-driven development (TDD) is an agile software de-
velopment approach that has been widely claimed to improve software quality.
However, the extent to which TDD improves quality appears to be largely de-
pendent upon the characteristics of the study in which it is evaluated (e.g.,
the research method, participant type, programming environment, etc.). The
particularities of each study make the aggregation of results untenable. Objec-
tives: The goal of this paper is to: increase the accuracy and generalizability
of the results achieved in isolated experiments on TDD, provide joint con-
clusions on the performance of TDD across different industrial and academic
settings, and assess the extent to which the characteristics of the experiments
affect the quality-related performance of TDD. Method : We conduct a family
of 12 experiments on TDD in academia and industry. We aggregate their re-
sults by means of meta-analysis. We perform exploratory analyses to identify
variables impacting the quality-related performance of TDD. Results: TDD
novices achieve a slightly higher code quality with iterative test-last devel-
opment (i.e., ITL, the reverse approach of TDD) than with TDD. The task
being developed largely determines quality. The programming environment,
the order in which TDD and ITL are applied, or the learning effects from
one development approach to another do not appear to affect quality. The
quality-related performance of professionals using TDD drops more than for
students. We hypothesize that this may be due to their being more resistant
to change and potentially less motivated than students. Conclusion: Previous
studies seem to provide conflicting results on TDD performance (i.e., positive
vs. negative, respectively). We hypothesize that these conflicting results may
be due to different study durations, experiment participants being unfamiliar
with the TDD process, or case studies comparing the performance achieved
by TDD vs. the control approach (e.g., the waterfall model), each applied to
develop a different system. Further experiments with TDD experts are needed
to validate these hypotheses.
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1 Introduction

Test-driven development TDD is an agile software development approach stip-
ulating the construction of software systems by means of micro iterative testing-
coding cycles—as opposed to test-last approaches, where coding and testing
are rarely interleaved, and coding is usually performed before testing. Accord-
ing to TDD proponents [2,6], these micro-iterative testing-coding cycles are
the main reason why TDD outperforms test-last development approaches in
terms of software quality. Although the TDD literature [9,12,31,35,37,42,49]
examines several quality attributes, we focus here on external quality. Exter-
nal quality is one of the most researched attributes, which, according to its
proponents [2,6], TDD benefits the most. It is usually considered in the TDD
literature as the number of successful test cases in a test battery (i.e., test
oracle [8]) specifically built for testing the application under development [12,
31,42,49]1. In this article, we define quality as the percentage of test battery
tests developed by the experimenters that pass.

The rationale of TDD proponents is seemingly intuitive: if tests are built
up-front in small iterations—rather than after the code has been developed,
that is, “. . . Don’t write a line of new code unless you first have a failing
automated test. . . ” [6]—the developers put a limit on the code [2], think up-
front about its design [6], and reduce their stress in response to potential
errors [6]. These continuous and incremental iterations lead to a virtuous cycle
[6] that eventually translates into “. . . simpler designs. . . , systems that reveal
intent. . . , [and] extremely low-defect systems that start out robust, are robust
at the end, and stay robust all the time. . . ” [2].

Although this may sound too good to be true, there is no scarcity of empiri-
cal studies supporting these claims [9,12,31,35,37,42,49]. However, the extent
to which TDD improves quality is still inconclusive, especially in view of the
large heterogeneity of results reported in the literature, and the many dimen-
sions on which the studies differ. As many contextual factors vary across the
published studies, we wonder what impact they may be having on the reported
results.

Families of experiments—a term coined by Basili et al. in 1999 [5] for refer-
ring to groups of interrelated experiments pursuing the same goal—are on the
rise in software engineering (SE) [45]. However, there is no consensus on how
different interrelated experiments can be. Gomez et al. [21] state that they can
lie: from identical replications (i.e., experiments following exactly the same
procedures and operationalizations as baseline experiments), to conceptual
replications (i.e., experiments that only share research questions with baseline
experiments). Some other authors argue that they should only be conceptual
replications (e.g., Kitchenham [30]). In our experience after performing a Sys-
tematic Mapping Study (SMS) to identify the families of experiments already
published in SE [45], we have seen that experiments typically share experi-

1 For simplicity’s sake, we refer to quality and external quality interchangeably throughout
the rest of the article. We acknowledge the limitations of this under the threats to validity.
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mental design, response variable operationalizations, and research questions
and objectives. Nevertheless, some slight changes are usually made across the
replications (e.g., in terms of experimental session length or participant type
evaluated).

Albeit not without shortcomings (e.g., families tend to be composed of
fewer studies than are usually gathered in systematic literature reviews (SLRs),
families usually study fewer response variables than SLRs, etc. [45]) and have
some strengths that make them good for assessing the performance of SE
interventions (such as TDD) [45]:

– As families do not rely on already published studies, families avoid the
potential effects of publication bias (i.e., the tendency to publish more
favorable than unfavorable results [13]) on joint outcomes.

– As there is access to raw data within families (since the researchers run
the experiments themselves), it is possible to apply consistent procedures
for analyzing each experiment individually. This ensures that differences
across experiment results are not due to the use of different procedures
to analyze each experiment, but, instead, due to real differences in the
collected data [13].

– As the response variables can be measured identically in all the experi-
ments, families avoid the potentially detrimental effects of combining the
results of studies with different response variable operationalizations into
joint conclusions.

– As the researchers conducting families are able to design the experiments
as desired, they can systematically vary the conditions of the experiments
(e.g., their programming languages, experimental designs, etc.) with the
aim of assessing the influence of such changes on results [27], or fixing
identified flaws in the design.

To the best of our knowledge, the Experimental Software Engineering In-
dustry Laboratory (ESEIL Project) is the first research project undertaking a
family of experiments on TDD across several software industrial partners and
universities. With our family, we aim to answer three research questions:

– RQ1: Do TDD and iterative test-last development (ITL) perform similarly
in terms of quality?

– RQ2: To what extent is quality affected by the task under development?
– RQ3: To what extent is quality affected by the experiment characteristics:

participant type (i.e., professionals vs. students), programming environ-
ment2 (i.e., Java and related IDEs and testing tools vs. C++/C# and
related IDEs and testing tools), learning effects from one session to an-
other, or order of application of ITL and TDD?

2 Note that in our experiments the programming language is confounded with other vari-
ables: IDE, testing tools, and other programming environment related variables (the use
of Java implies the use of Java-related technologies, while the use of C++/C# implies the
use of C++/C#-related technologies). We have grouped all confounded variables under the
programming environment name.
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– RQ4: To what extent is quality affected by the participant characteristics:
programming, programming language, unit testing, or testing tool experi-
ence?

To answer these research questions, we conducted 12 controlled experi-
ments in both industry and academia. In all the experiments, we measured
quality identically and had the participants code identical tasks. We followed
a mixed approach for designing the experiments: while we adapted the pro-
gramming environments and experimental designs to the requirements of our
industrial partners, we explored the potential limitations of these experiments
by comparing their results with the outcomes of the academic experiments that
we ran. We followed a two-step data analysis approach: we first conducted a
meta-analysis to output joint results [10] (answering RQ1), and then we per-
formed a series of exploratory analyses (i.e., sub-group meta-analyses [10] and
linear mixed models [11]) to assess the influence of third variables on results
(answering RQ2 and RQ3). Along the way, we made several findings:

– TDD novices (both professionals and students) perform slightly better with
ITL than with TDD in terms of quality—although the difference in per-
formance is not statistically significant. Our results suggest that not much
improvement would be achieved with the application of TDD over ITL by
TDD novices.

– TDD performance appears to drop more for professionals than for students
(compared to performance using ITL). This suggests either that students
learn completely new development approaches (such as TDD) faster than
professionals or that the drop in quality for professionals applying TDD is
greater than for students because professionals achieve higher quality than
students when using ITL.

– Programming environment (i.e., Java environment, or C++/C# environ-
ment), the order in which TDD is applied (i.e., in the first or second ses-
sion), the learning effects from one session to the next, or the task being
developed—as long as the same task is developed with both TDD and
ITL—do not appear to have an impact on the difference in performance
between TDD and ITL.

The main contributions of this paper are an assessment of the quality-
related performance of TDD in a family of experiments and a series of ex-
ploratory analyses to evaluate the extent to which the experiment and par-
ticipant characteristics affect TDD performance in industrial and academic
settings. We think this article rounds out previous research in several ways:

1. This is the first family of experiments on TDD. Besides, this is one of the
largest families in SE research with respect to number of experiments (12),
universities (8), companies (4), and participants (411) [46]. This research
should increase the reliability of the findings, and the generalization of
results to different contexts and populations [5].

2. This family of experiments is one of the few studies on TDD—apart from
[42]—that attempt to provide joint conclusions by means of meta-analysis.
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This should increase the reliability of the joint conclusions with respect
to findings reached using a narrative approach of counting positive vs.
negative results [10,22]. The narrative approach is typically adopted in
secondary and tertiary studies on TDD—perhaps because it is not feasible
to apply meta-analysis on the studies published in the literature.

3. This family of experiments includes the results of four industrial experi-
ments on TDD. The need for more industrial experiments on TDD was
already highlighted by Munir et al. [37] and Rafique and Mǐsić [42].

4. This family of experiments compiles the primary studies identified in pre-
vious secondary studies, remaps and organizes them with regard to their
characteristics and results, and provides further lines of research in view of
both the results of our family of experiments, and the resulting map. This
adds to the work of others, calling upon the community to conduct more
research on TDD [40].

5. This study is the first on TDD that aims to study the influence of partic-
ipant characteristics on results across multiple experimental settings and
populations. We can do this as we have access to the raw data of all the ex-
periments and also because we used similar instruments to measure the par-
ticipant characteristics and external quality across the experiments. This
may be unfeasible in SLRs: either because the raw data are not available, or
because different measurement instruments are used across the published
experiments to measure participant experience.

6. This family of experiments is one of the few SE families that provide the
raw data and R code to make results reproducible [46]. Also, it is one of the
few families planning to make experimental data available (i.e., the code of
participants). This should facilitate re-analysis, the application of different
analysis methods to provide joint conclusions, the investigation of other
research questions, and the integration of results in future meta-analyses.

7. The results of this family of experiments contradict findings commonly
reached in secondary and tertiary studies on the effectiveness of TDD on
external quality [29]. While secondary and tertiary studies typically indi-
cate that TDD achieves higher quality than control approaches [29], we do
not reach the same conclusion. Also, our results disagree with the findings
of the meta-analyses conducted by [42] claiming that industrial experiments
led to more significant improvements in quality with TDD. In particular,
we reached the opposite conclusion in the industrial experiments that we
ran (i.e., the performance of professionals with TDD dropped to a larger
extent than for students). The difference in results could be due to the
control used. In our family of experiments, we use ITL (instead of the wa-
terfall model) as a control. The only difference between ITL and TDD is
when tests are generated (either before or after coding), but both use short
development cycles. The waterfall model implies that tests are generated
after coding and there are no development cycles. The benefits of TDD
could be due to the use of these short development cycles (which is also a
characteristic of ITL [29], but not of the waterfall model). In view of this,
we call upon the community not only to look at the results of the studies
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but to also assess the extent to which participant or study characteristics
may be influencing results.

8. This family of experiments partially supports the results of [20], one of
the latest publications on TDD in testing software engineering, namely,
that the order of testing (either first, as in TDD, or last, as in ITL) does
not appear to influence external quality. Indeed, although ITL achieved
slightly higher quality than TDD in our family of experiments, the differ-
ence was not relevant. What really appears to be improving quality is not
when testing is performed—first or last—but rather the average duration
of development cycles, the duration uniformity and the refactoring effort.

9. This family of experiments partially supports Beck’s suggestions [6] that
virtuous cycles—leading to higher performance—materialize with TDD.
However, such virtuous cycles may only materialize with students that
have quite a lot more programming experience than their peers. This is a
ground for further research to double-check our observations.

Paper organization. Section 2 discusses the work related to our study.
In Section 3, we describe the characteristics of our family of experiments on
TDD. Then, Section 4, Section 5, Section 6 and Section 7 answer RQ1, RQ2,
RQ3, and RQ4, respectively, and discuss the implications of our findings. In
Section 8, we outline the threats to validity of our study. Finally, we outline
our conclusions in Section 9.

2 Related Work

Here we provide an overview of the research that has been conducted so far
on the quality-related performance of TDD based on the results of the sec-
ondary studies addressing this question [9,12,31,35,37,42,49]. In particular,
we first went through the secondary studies and gathered all the primary stud-
ies that—according to the authors of the secondary studies—studied external
quality. Then, we removed duplicates by title and by double publication (i.e.,
any primary studies that had already been published in other venues), selecting
the most recent publications. Finally, we extracted the following information
from each primary study for the purposes of classification:

– The results achieved : the response ratio effect size [10]. First we calculated
the response ratio by dividing the mean of the quality scores achieved with
TDD by the mean of the quality scores achieved with the control approach
(e.g., ITL or waterfall model). For example, if 30 bugs have been reported
in a system developed with ITL and 10 in a system developed with TDD,
the response ratio is equal to 3. We multiply the response ratio by 100%
to convey the percentage improvement of TDD over ITL. In the above
example, TDD outperformed ITL by 300%.

– The research method according to Wohlin et. al.’s definitions [58]:

– Surveys: empirical studies that collect information from or about people
to describe, compare or explain their knowledge, attitudes and behavior
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For us, the defining characteristic of surveys is that their results are
based upon the opinions of the respondents.

– Case studies: empirical studies that draw on multiple sources of evi-
dence to investigate one instance of a phenomenon within its real-life
context. For us, the defining characteristic of case studies is that their
results are based upon those observed in uncontrolled but real-life en-
vironments.

– Experiments: empirical studies that investigate a certain phenomenon
in a controlled—albeit scaled down—environment. For us, the defining
characteristic of experiments is that all the contextual factors of the
experiment (e.g., the programming environment, the tasks under de-
velopment, etc.) have an identical impact on all the interventions being
compared.

– The control: the whole system coded before testing (waterfall) or the re-
verse approach of TDD (ITL).

– Participant type: we used bachelor students (BSc), master students (MSc),
or professionals (Prof).

– Task type: the systems developed by the participants are either toy tasks
(i.e., small tasks with a reduced scope), or industrial tasks (i.e., large tasks
with real-life requirements).

– The unit of analysis: quality is evaluated for solo programmers (i.e., solo),
for pair programmers [56] (i.e., pairs) or for groups (i.e., teams).

– Length of the study : days, weeks, months, or years.
– Programming environment: the technologies that may potentially interact

with the performance of TDD (e.g., the programming language, the testing
tool used, etc.).

Table 1 shows the list of the primary studies3 that we selected (ordered by
response ratio, with the worst results for TDD first). Notice that:

– The results of the different studies are hugely variable. For example, TDD
outperforms ITL in terms of quality measured by successful tests in a four-
hour experiment with undergraduate students coding toy tasks with Java,
JUnit and Eclipse [P24] by just 2.5%. On the other hand, TDD outperforms
the waterfall model in terms of quality measured by reported bugs in a case
study at Microsoft, where a small team of developers used C++ and C#
to implement a new functionality in an industrial system over several years
[P23], by up to 90%. The variation ranges from -39% to +267%.

– In most studies, TDD achieves higher quality than control approaches (mostly
the waterfall model) both quantitatively (20 out of 36) and textually4 (the
eight studies marked with a ’-’). Detrimental effects were reported by only
seven studies, of which four showed negligible effects (from -5% to -3%).

3 Due to space restrictions, we moved the references of the primary studies to the supple-
mentary material (see Appendix A).

4 It was not feasible to compute any response ratio synthesizing the quality achieved with
TDD with respect to a control approach.
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– Most primary studies are case studies (27 out of 36). TDD was evaluated
in a controlled environment in only eight experiments.

– Case studies report the most optimistic results for TDD. When case studies
show detrimental effects, they tend to be negligible (except for [P31] with
undergraduate participants).

– Professionals tend to participate only in case studies, which tend to eval-
uate TDD performance for teams rather than for solo programmers (i.e.,
the resulting quality of the whole system after it has been implemented by
a group of developers). In the only two controlled experiments in which
professionals participated and were evaluated as either solo or pair pro-
grammers (i.e., [P7,P10]), the results were not as favorable to TDD.

– The most beneficial results for TDD tend to be achieved for teams. On the
contrary, the performance of TDD for solo programmers shows conflicting
evidence (ranging from -33% to +96%). In general, the studies evaluating
solo or pair programmers show less optimistic results than those evaluating
teams (except for the outlier in [P35]5).

– TDD has been evaluated with both toy tasks and industrial tasks (i.e., 16
and 20, respectively): Professionals are usually involved in studies evaluat-
ing the performance of TDD in industrial tasks, whereas students partici-
pate in studies with toy tasks. The studies with toy tasks tend to provide
less optimistic results for TDD.

– The studies with longer periods of evaluation tend to report the most fa-
vorable results for TDD. This suggests that it may be necessary to apply
TDD for months or years, rather than days or weeks, to get larger benefits
from this approach.

– TDD has been mostly evaluated with Java technologies. However, some iso-
lated studies have also evaluated TDD with C technologies (e.g., C/C++/C#
and related IDEs and testing tools). In such studies, the results are always
favorable to TDD.

Summarizing, most studies indicate that TDD is superior to control ap-
proaches (i.e., mostly the waterfall model) with respect to quality. However,
the extent to which TDD achieves higher quality than control approaches ap-
pears to be largely dependent upon the characteristics of the study in which
TDD is evaluated. The heterogeneity of research methods, programming envi-
ronments, lengths of evaluation, units of analysis, task types, and participant
types makes the aggregation of results untenable. Besides, some other issues
rule out the quantitative aggregation of results, and the search for potential
variables explaining the disparity of results, including:

– The different practices applied in tandem with TDD. For example, while
TDD and pair programming were applied together in some studies (e.g.,
[P11,P15]), other studies applied TDD either together with other agile
practices (e.g., [P14]), or merely as a part of custom-made development pro-

5 The outlier observed in [P35] may have been due to the small number of participants,
and the larger variability of results expected in small sample sizes [14].
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cesses (e.g., [P26]). Thus, the aggregation of the results of these studies—
each applying different practices in tandem with TDD—to provide joint
conclusions would be tantamount to mixing apples and oranges [10]. This
may affect the reliability of joint results.

– The different ways in which quality was measured. While quality is com-
monly measured as the percentage of test battery test cases that pass (e.g.,
[P9,P10,P11,P36]), external quality is measured as the number of defects
that were found in bug tracking systems (e.g., [P3,P23]) in some studies
or as a customized scale as a result of applying scoring templates on the
solutions of the participants (e.g., [P7]) in others. This heterogeneity of re-
sponse variable operationalizations may be an obstacle to the aggregation
of results.

In this study, we followed a different approach to others adopted in the
literature with the hope of moving beyond the limitations of aggregating pub-
lished results. In particular, we conducted a family of experiments (versus
running one single empirical study) on TDD (versus applying TDD in tandem
with other approaches) and used identical scales to measure quality across
all of our experiments (versus using different metrics to measure quality). We
also trained the participants across all our experiments in identical TDD and
ITL procedures and had them code identical tasks. Thus we were able to
use formal analysis methods to aggregate the results of the experiments (e.g.,
meta-analysis [10] and linear mixed models [11]). We also made some changes
across the experiments. As a result, we were able to assess the extent to which
the characteristics of the experiments may have affected the results. Finally,
assuming that the results in our family are representative of what may be hap-
pening in other studies on TDD, we were able to hypothesize on the variables
potentially behind the disparity in the results observed so far in the literature.
In the following, we outline the design of our family of experiments.

3 Family Design

We report the variables, objectives, and the tasks developed by the participants
in our family of experiments in Section 3.1. We provide an overview of the
characteristics of the experiments in Section 3.2. We focus on the ethics of the
experiments in Section 3.3. We describe participants experience in Section 3.4.
Finally, we discuss the data analysis in Section 3.5

3.1 Variables, Tasks and Objectives

The main factor (independent variable) in our family of experiments is the
development approach, with TDD and ITL (following Tosun et al. [52]) as
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treatments6. ITL is closely related to TDD in terms of constitutive elements
(breaking the specification into smaller subtasks, testing, coding, and refac-
toring). ITL differs from TDD regarding the order of these steps (test-last
versus test-first, respectively). ITL has been chosen as the control instead of
the waterfall model because in the waterfall model testing is done at the end.
If the result were that TDD performs better than the waterfall model, it could
be because the participants have not tested, and have spent most of the time
coding. This does not happen in the case of ITL, where it is guaranteed that
testing is done at the end of each development cycle.

TDD and ITL were applied by the participants in our experiments to de-
velop at least one out of five toy tasks: MarsRover (MR), Bowling Scorekeeper
(BSK), MusicPhone (MP), Sudoku (SDK) and Spread-Sheet (SS). As MP and
SDK were only developed in one experiment (i.e., University 1), and SS in two
experiments (i.e., Company 3 and 4), they are not reviewed here for reasons of
space. However, interested readers are referred to the supplementary material
where we provide all specifications7.

BSK is a modified version of Robert Martin’s Bowling Scorekeeper [36].
The goal of the task is to calculate the score of a single bowling game. The
task is algorithm-oriented. BSK does not require prior knowledge of bowl-
ing scoring rules; this knowledge is embedded in the specification. MR is a
programming exercise that requires the development of a public interface for
controlling the movement of a fictitious vehicle on a grid with obstacles. MR
is a popular exercise in the agile community to teach and practise unit test-
ing. There is a difference in the level of granularity of the task specifications.
While BSK’s specifications are fine-grained (i.e., detailed specifications where
the functionality of the task is divided into small chunks that can be atomically
implemented one after another), MR’s specifications are coarse-grained (i.e.,
less detailed, and without dividing larger functionalities into smaller parts).
We used the same specifications for BSK and MR in our experiments as were
used in previous TDD experiments in the literature [P9],[15,20,52]. The size
of the MR and BSK programs that we—the experimenters—developed is 295
LOC and LOC respectively. We discuss the trade-offs of using toy tasks in the
threats to validity section.

The main response variable (dependent variable) within the family is
external quality. As usual in the TDD literature, we measure external quality
as the percentage of successful tests in the test battery—or test oracle [8]—that
we (i.e., the experimenters) built to test participant solutions. The participants
had no access to these test oracles. We measured external quality as:

QLTY =
#Tests(Pass)

#Tests(All)
∗ 100%

6 Throughout the rest of the paper we refer to the treatment—terminology commonly used
in experimental design and data analysis [11,23,26,58]—and the development approach (i.e.,
either ITL or TDD) interchangeably.

7 https://github.com/GRISE-UPM/FiDiPro ESEIL TDD.



A Family of Experiments on Test-Driven Development 13

We consider this to be an appropriate measure of external quality, since
when measured from a functional viewpoint, it would be equivalent for both
ITL and TDD.

We built a different test oracle to test each task. We used the same test
oracle to measure the external quality of the code produced by all participants.
When tests failed due to trivial errors in the code, we corrected it. Table 2
shows the total number of test cases that make up the MR and BSK test
oracles, testing statement coverage and branch coverage8 [38], and mutation
score9 [24] for an implementation that we—the experimenters—coded for each
task based on their specifications.

Table 2 Test oracles for MR and BSK.

Task Number Statement Branch Mutation
of tests coverage coverage score

MR 52 100% 84.9% 82%
BSK 48 100% 96.4% 94%

Finally, we define the objective of our family of experiments following the
Goal-Question-Metric (GQM) paradigm proposed by Basili et al. [4] as follows:

GQM. Analyze TDD and ITL for the purpose of comparison with respect
to external quality from the point of view of the researcher in the context
of TDD novices coding toy tasks in controlled experiments.

3.2 Design of the Experiments

We embedded all our industrial experiments within TDD training courses so
as to increase their appeal to practitioners [54], even though this approach has
its own shortcomings. As experiments are embedded within training courses,
the professionals attending the experiments are TDD novices. None of the par-
ticipants reported having any TDD or ITL experience in our questionnaire10.
The decision to embed experiments within training courses forced us to make
certain design decisions.

First, the professionals attending the training courses needed to apply both
ITL and TDD—as otherwise, they might complain that they did not exercise
all the development approaches taught during the course. Thus, we had to
rely on within-subjects designs for all our industrial experiments. Second, as
all the participants needed to exercise both development approaches, we had to

8 Both measured with eclEmma: https://www.eclemma.org/
9 Measured with muJava: https://cs.gmu.edu/ offutt/mujava/

10 Note that the fact that participants do not have any ITL and TDD experience does
not mean that they have no software testing experience. ITL and TDD have to do with
knowledge of slicing and not with knowledge of testing. Therefore, participants with testing
experience might conceivably have no experience with either ITL and/or TDD.
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Table 3 Family of experiments on TDD: experimental designs (ordered by experimental
design).

ID Experiment N Design Participant Task Environment
Type

1 University 1 16 Within Students MR, BSK, Java, JUnit, Eclipse
SDK, MP

2 Company 1 18 Within Professionals MR, BSK Java, JUnit, Eclipse
3 Company 2 20 Within Professionals MR, BSK C++, Boost, Eclipse, Vim
4 University 2 48 Within Students MR, BSK Java, JUnit, Eclipse
5 University 3 53 Within Students MR, BSK Java, JUnit, Eclipse
6 Company 3 8 Within Professionals MR, BSK, Java, JUnit, Eclipse

SS
7 Company 4 13 Within Professionals MR, BSK, C#, GxUnit, GeneXus

SS
8 University 4 20 Crossover Students MR, BSK Java, JUnit, Eclipse
9 University 5 41 Between Students BSK Java, JUnit, Eclipse
10 University 6 69 Between Students BSK C#, NUnit, Visual Studio
11 University 7 64 Between Students BSK C#, NUnit, Visual Studio
12 University 8 41 Between Students MR, BSK Java, JUnit, Eclipse

make the participants code different tasks with each development approach—
as otherwise, successive attempts at coding the same task could boost their
performance, regardless of the development approach applied. As a result, we
had to introduce more than one task in our industrial experiments.

Having these requirements in mind, we decided to design all our industrial
experiments as AB within-subjects experiments (see Table 4). We decided
to run AB within-subjects experiments—instead of crossover experiments (see
Table 5)—as they fitted the structure of a training course better. In particular,
thanks to this design, we were able to train participants in ITL on the first day
and in TDD on the last day, running the experimental session to assess the
performance of each development approach immediately after each training
session. Note that the companies mainly see a course. Therefore, we had to
prioritize a design that was as least disturbing as possible for training purposes.

Table 4 AB within-subjects design.

Group Day 1 (ITL) Day 2 (TDD)

G1 Task 1 Task 2
G2 Task 2 Task 1

Even though an AB within-subjects design suited the structure of our
training courses, this design has a major shortcoming: the order in which the
development approaches are applied may distort results [58]. This is because
the participants may learn something during the first session (in this case, the
ITL session) that could boost their performance in the second session (in this
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Table 5 Crossover design.

Group Day 1 (Task 1) Day 2 (Task 2)

G1 ITL TDD
G2 TDD ITL

case, the TDD session). For example, they may learn how to code in short
iterations in the first session, which could boost their performance with TDD.
In order to assess the extent to which the order of application distorted the
results, we compared the results of our AB within-subjects experiments with
the outcome of a crossover experiment that we ran (see below).

We had more degrees of freedom for the design of the experiments in
academia. In particular, and as these experiments were part of longer pro-
gramming courses, we could run both within-subjects and between-subjects
experiments. We ran between-subjects experiments (i.e., experiments in which
each participant applies just one development approach, either TDD or ITL)
for the experiments where we expected more participants. By running between-
subjects experiments, we were able to assess the extent to which applying one
development approach, instead of two, affected the results. We designed the
rest of our experiments in academia as either AB within-subjects experiments
or as a crossover experiment.

Finally, we adapted the programming environments to the requirements of
our host intuitions. These adaptations are a double-edged sword: on the one
side, they may lead to heterogeneity of results (as if the programming envi-
ronments are different, the results of the experiments may also be different);
on the other side, they also represent an opportunity to increase the external
validity of the results (as TDD is evaluated in different programming environ-
ments) and to increase the internal validity of the results (as the performance
of participants forced to use an unfamiliar programming environment could
be affected).

In all experiments, participants had two and a half hours to develop each
experimental task. One experimental task corresponds to one experimental
session. Participants work individually on each experimental task. To avoid a
possible effect of language, the experiment is run in English only when the par-
ticipants are fluent in it (i.e., companies where developers use English in their
daily work, university courses taught in English, or university courses where
a certain level of English is required). Otherwise, it is run in the participants’
mother tongue (this was the case for University 3 and Company 4).

Table 3 summarizes the characteristics of the experiments in our family.
To ease the visualization of the data in Table 3, we grouped the experiments
by experimental design.



16 Adrian Santos et al.

3.3 Ethics

All participants are aware that they are participating in an experiment measur-
ing the quality of their solutions. Participation is voluntary in all experiments
except University 6 and University 7. In all companies and University 1, par-
ticipants are enrolled in a training course about TDD. Students in University
2, University 3, University 4, University 5 and University 8 participate in a
voluntary exercise. In University 6 and University 7, the experiment is aligned
with the teaching goals of the course.

In University 1, University 4 and University 8, the participation in the
experiment automatically implied giving consent for using the participants’
data for analysis. In University 2, University 3, University 5, university 6 and
University 7 a written consent was signed. Note that the GitHub repository
contains only the code of those participants who gave us consent.

We assured participants before running the experiments that their data
would be anonymized so that they could not be identified by any means. Ac-
cording to the guide on good data protection practice in research11, an effective
anonymization solution prevents all parties from singling out an individual in
a dataset. The suggested procedures for anonymization are: 1) use random and
unpredictable pseudonyms, 2) make sure the number of pseudonyms possible
is so large that the same pseudonym is never randomly selected twice. Our
anonymization procedure consists of two steps:

1. We provided our contact person in each company with the format of the
IDs to be generated. We explained them that we neither want to know
the participants’ names, nor the link between the IDs and the people.
Participants were requested to use their IDs during the whole experiment.

2. We applied the (irreversible) cryptographic hash function MD5 to the IDs
generated by the companies.

This two-step procedure guarantees that neither the general public, nor the
companies, nor the researchers know who the participants are. Therefore, the
link between an individual subject and a performance measure in our dataset
is completely lost. For the case of the experiments run with students, it is
possible that the researchers who conducted that specific experiment know
who they are, but neither the rest of the researchers involved in this project,
nor the general public.

3.4 Participants

Participants were handed a survey some days before the experiments took
place. The survey contained a series of self-assessment questions that asked
the participants about their experience with programming, unit testing, the
programming language, and the testing tool to be used during the experiment.

11 https://www.eui.eu/documents/servicesadmin/deanofstudies/researchethics/guide-
data-protection-research.pdf
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We followed an approach similar to the one suggested by Falessi et al. [16]
to measure the real participant experience. In particular, we designed each
question so it could be answered on an ordinal scale (inexperienced if the
participants had less than 2 years of experience, novice if the participants
had between 2 to 5 years of experience, intermediate if the participants had
between 5 to 10 years of experience, and expert if the participants had more
than 10 years of experience).

After using this questionnaire in several experiments (University 1, 4 and
8, and Company 1 and 2), we realized that the periods of time that we at-
tached to each level of experience (experience of less than 2 years, 2 years to
5 years, 5 to 10 years, and greater than 10 years) were not suitable for distin-
guishing participants with completely different experience. Indeed, according
to this scale, most of the participants to fell into identical experience levels
(as there were hardly any participants with more than 5 years of unit testing
or testing tool experience). In turn, these scales were not fine-grained enough
to distinguish between differently experienced participants, even if they used
unit testing and testing tools as frequently as each other.

In view of this, and as no consensus seems to have been reached yet on how
best to measure developer experience in SE [7,16,17], we decided to remove
the time periods that we had allotted to each experience level. In fact, we
adopted a similar approach to the one suggested by Feigenspan et al. [17] to
measure participant experience in the rest of experiments that we ran (Uni-
versity 2, 3, 5, 6 and 7, and Company 3 and 4): with self-assessment questions
on an ordinal scale (inexperienced, novice, intermediate and experts) without
time-associated experience levels. Although this decision helped us to better
describe participants (as it provided for a greater variability of participant
responses—see below), this change of scales had an impact on the possibility
of assessing the effect of participant experience in the joint meta-analysis of
results. In particular, joint meta-analyses run the risk of mixing apples and
oranges, as participant experience was measured differently across the exper-
iments. We discuss the trade-offs of this decision in the threats to validity
section.

Figure 1 shows the profile plot illustrating the mean participant experience
in the experiments using the first type of questionnaire. Figure 2 shows the
profile plot for participant experience using the second type of questionnaire.
For simplicity’s sake, we consider here, for merely descriptive purposes, that
inexperienced, novice, intermediate and expert correspond to 1, 2, 3 and 4,
respectively, and that experience is measured on a continuous rather than
an ordinal scale. This approach is typically followed in other disciplines [39].
Participant TDD and ITL experience has not been included in Figures 1 and
2 because participants had no previous experience with TDD or ITL.

We find in both Figure 1 and Figure 2 that participants claimed to have
more programming than programming language experience during the exper-
iment. Also, participants claimed to be more experienced with programming
or the programming language than with unit testing or the testing tool used
during the experiment. Besides, while participant experience across the exper-
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Fig. 1 Profile plot: participant experience with first questionnaire.
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Fig. 2 Profile plot: participant experience with second questionnaire.
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iments in Figure 1 is jammed together (as, remember, most of the participants
using the first type of questionnaire reported having similar levels of experi-
ence because experience was associated with years of practice), the spread of
participant experience is less pronounced than in Figure 2. Finally, while the
participants with the greatest programming experience are based at Company
2 in Figure 1 and at Company 4 in Figure 2 (i.e., professionals in both cases),
there is a tendency for professionals to consider themselves less skilled than
students in some cases (e.g., notice that the programming language experience
line at University 1 is above that of Companies 1 and 2 in Figure 1 or that the
line for all experience variables, except programming experience, at Company
4 is lower than in most experiments with students in Figure 2). This must be
taken into consideration for exploratory analysis purposes, as it may have an
impact on their results.

None of the professionals claimed to have any prior experience with ei-
ther ITL or TDD. As the experiments were embedded within training courses
on TDD and ITL, the professionals would have skipped the course—and the
experiment altogether—if they had had any previous experience in these de-
velopment approaches. Considering that course attendance was optional, pro-
fessionals already familiar with TDD and ITL may have not seen any benefit
in taking time out to attend the course and take part in the experiment.

As a summary, according to the results of the questionnaires and our per-
ceptions while running the experiments, the sample of participants in our
family had disparate programming, programming language, unit testing and
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testing tool experience. Additionally, and as all the experiments were embed-
ded within training courses, all the participants were absolute TDD novices.

3.5 Analysis Approach

As regards RQ1, we first provide the descriptive statistics (sample sizes,
means, standard deviations and medians [18]) of the quality scores achieved
with TDD and ITL in each experiment. With the aim of easing the understand-
ing of the data, we then round out the descriptive statistics with a profile plot
showing the mean quality scores achieved with ITL and TDD in each exper-
iment. Afterwards, we report the joint result for all the experiments together
output by a two-stage individual participant data (IPD) meta-analysis [43]. In
particular, we first analyze the data of each between-subjects experiment with
an independent t-test [18], and the data of each within-subjects experiment
with a dependent t-test [18]. Then, we combine the estimates provided by the
t-tests (i.e., the difference between the means of the TDD and ITL groups),
and their respective standard errors by means of random-effects (RE) model
meta-analysis [10]. We adopted this approach as it allows us to:

– Combine the results of experiments with different experimental designs
into a joint conclusion.

– Transparently weight each experiment in the joint result according to the
standard error of its estimate.

– Provide visual summaries of results (i.e., forest plots [10]).
– Incorporate heterogeneity by simply fitting a random-effects model instead

of a fixed-effects model [10].
– Assess heterogeneity with relatively straightforward means: the Q-test or

the I2 statistic. Q tests the null hypothesis that all studies share a common
effect size. I2 determines what proportion of the observed variance is real
(if it is near zero, almost all the observed variance is spurious, and there
is nothing to explain; if it is large, it would make sense to speculate about
reasons for, and try to explain, the variance). I2 is interpreted as: 25% low,
50% medium and 75% high [10].

Regarding RQ2, we consider the data of MR and BSK only. The partici-
pants in the experiments of our family were seldom set the SDK, MP and SS
tasks. Therefore, we did not have sufficient data to get accurate results (we
acknowledge the limitations of this decision in the threats to validity section).
We analyze the data by means of a one-stage IPD meta-analysis [43]; in partic-
ular, we fit linear mixed models [11]. As we did in the previous meta-analysis,
we allow for heterogeneity of results by considering the treatment as a random
effect across the experiments. To assess the influence of task on quality we fit
a linear mixed model with the main effects of treatment and task and their
interaction. To ease the understanding of the results, we provide the respec-
tive ANOVA tables [18] and marginal means [18] for each analysis. We use a
one-stage IPD meta-analysis rather than a two-stage IPD meta-analysis (as
we did before) because [11,43]:
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– It is useful for assessing the effect of multiple variables on results at once
(e.g., the main effects for treatment and task, and their interaction).

– It outputs personalized contrasts for interpreting the results (e.g., what is
the expected quality with either TDD or ITL for the average number of
tests developed by the participants?).

– It accommodates missing data so that participants with missing scores can
still contribute to the joint result (e.g., by fitting linear mixed models [11]).

We analyze RQ3 by means of RE model sub-group meta-analysis [10]. We
round out each of the sub-group meta-analyses that we perform with an IPD
one-stage linear mixed model with interaction terms [11]. We use linear mixed
models to provide marginal means and, thus, ease the interpretation of the
results. In the following, for each variable that we study (i.e., participant type,
programming environment, etc.), we report the results of the sub-group meta-
analysis that we performed, its corresponding forest plot, and the marginal
means that we calculated from the linear mixed model. We adopt this approach
as it allows us to:

– Visually convey the results by means of forest plots [10].
– Relatively straightforwardly interpret the heterogeneity of the results (e.g.,

using the Q-test or the I2 statistic [10]).

Finally, we analyze RQ4 by means of a one-stage IPD meta-analysis, as
we did for RQ2, for the same reasons. As above, we account for heterogeneity
of results by considering the treatment as a random effect across the experi-
ments. To assess the influence of participant characteristics on quality, we fit
four different linear mixed models (one for each of the four characteristics) as
specified in [19], with the main treatment effects and the respective charac-
teristic, their interaction, and the interaction between the treatment and the
mean experience in each experiment. To ease the understanding of the results,
we report the ANOVA p-values, marginal means, and profile plots for the in-
teraction between treatment and participant characteristic. Separate analyses
are performed for students and professionals, and for the two different types
of questionnaires used in the experiments, as, according to Section 3.4, they
could be influencing the results.

4 RQ1: ITL vs. TDD

Throughout this section, we answer RQ1: Do TDD and ITL perform similarly
in terms of quality? To do so, we present the descriptive statistics of the data
in Section 4.1, the results of the joint analysis in Section 4.2, and discuss our
findings, which we frame within the results of the identified primary studies
on TDD, in Section 4.3.
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4.1 Descriptive Statistics

Table 6 shows the sample sizes (N), means, standard deviations (SD) and me-
dians of the quality scores achieved with ITL and TDD in all the experiments
within our family (in the same order as in Table 3). As we can see, the mean
quality achieved with ITL goes from as high as M = 68.28 at Company 1 to
as low as M = 22.84 at Company 4, while the means for TDD go from as high
as M = 67.64 at Company 3 to as low as M = 10.68 at Company 4.

Table 6 Summary statistics for quality by experiment and development approach.

Experiment Treatment N Mean SD Median

University 1
ITL 16 32.12 29.94 24.11
TDD 14 31.85 21.79 24.56

Company 1
ITL 16 68.28 34.27 85.71
TDD 17 42.50 39.32 42.70

Company 2
ITL 20 41.61 31.66 50.75
TDD 20 38.28 22.45 33.33

University 2
ITL 44 65.34 30.08 76.56
TDD 43 36.24 28.80 39.33

University 3
ITL 49 26.52 18.11 23.44
TDD 52 32.36 25.05 33.26

Company 3
ITL 8 50.42 32.76 46.36
TDD 6 67.64 26.24 70.77

Company 4
ITL 12 22.84 20.57 17.12
TDD 11 10.69 14.75 7.86

University 4
ITL 20 38.20 31.16 39.43
TDD 20 41.42 35.58 35.79

University 5
ITL 16 43.86 23.85 52.68
TDD 18 39.35 25.03 29.46

University 6
ITL 33 37.12 30.08 29.69
TDD 38 39.52 27.48 29.69

University 7
ITL 35 44.96 28.97 23.44
TDD 28 34.26 20.53 23.44

University 8
ITL 20 37.42 39.31 22.22
TDD 21 29.24 36.66 5.62

Figure 3 shows the profile plot for the mean quality scores achieved with
ITL and TDD in all the experiments12. As we can see, the means for TDD and
ITL are clustered between 50 and 25 in most experiments. Additionally, the
slope of the lines in these experiments (i.e., the difference between the mean
performance achieved with TDD and ITL) is more or less flat. In other words,
TDD and ITL appear to perform similarly in these experiments. However,
some experiments have relatively larger slopes (i.e., Universities 3 and 5 and
Companies 1 and 3), where the differences between TDD and ITL are more
noticeable.

12 We analyzed the data with t-tests. Therefore, the mean difference (i.e., the slope of the
line) provides useful information for evaluating experiment results.
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Fig. 3 Profile plot: ITL and TDD mean quality.
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4.2 Analysis for ITL vs. TDD

Fig. 4 Forest plot: TDD vs. ITL mean effects.
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Figure 4 shows the forest plot for the RE model meta-analysis that we
performed. It shows that ITL achieves higher quality than TDD in most ex-
periments (as the estimate for these experiments is on the left-hand side of the
figure). In only three experiments (i.e., Companies 1 and 4, and University 2),
however, is the difference in performance between ITL and TDD statistically
significant (statistical significance holds when the 95% confidence intervals—
95% CI—of the estimate do not cross 0). When pooling together all the es-
timates by means of meta-analysis (see the black diamond at the bottom),
ITL achieves higher quality than TDD (M = −7.06, 95% CI =(-14.47, 0.35)).
However, this difference in performance is not statistically significant (as the
95% CI crosses 0), and small—considering that M = −7.06 is a small drop in
performance compared to the full range of quality scores that can be achieved
(i.e., 100% to 0%). Additionally, there is a medium heterogeneity of results
(I2=67.8%, Q-statistic=39.70, p-value=<0.001) according to commonly used
rules of thumb [10].
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Key findings

– The joint result shows that TDD novices coding toy tasks achieve slightly
better quality scores with ITL than with TDD.

– The results vary largely across the individual experiments.

4.3 Discussion

The participants achieve low quality scores overall, regardless of the treatment,
despite the fact that they are coding toy tasks. However, the standard devia-
tion is also large. We hypothesize that the low experience of the participants
could explain their low quality scores. More precisely, the testing experience
might have played a critical role. Participants must write test cases regardless
of the treatment being applied. If their unit testing experience is low, the over-
head caused by writing the test cases could have reduced the time necessary
to produce high quality code.

ITL quality is slightly higher than for TDD in our family of experiments.
However, this difference is not statistically significant. Nonetheless, as the
95% CI of the joint result in our family (i.e., the black diamond at the bottom
of the forest-plot) is very narrow—at least compared to the 95% CI of the
individual experiments—running another experiment and adding its results to
the outcomes of our family is unlikely to make much difference the joint result
much. In particular, as we already conducted a joint meta-analysis of the data
of 12 experiments in our family, our experiments would have a relatively greater
weight than an isolated experiment in the joint result of any prospective meta-
analysis (unless, of course, a huge experiment was added to our family [10]).
Consequently, the joint results would be similar to the findings for our family.

Our joint results (i.e., the control approach achieved slightly higher quality
than TDD) are consistent with findings reported in other experiments on TDD
where MSc students developed toy tasks in experiments spanning days or
weeks [P22,P36]. Additionally, the results achieved at Company 3 (i.e., quality
for TDD is slightly higher than for the control approach) are also consistent
with the outcomes of other experiments with professionals published in the
literature (i.e., [P10]). However, Company 3 results should be interpreted with
caution, at least in view of the wide 95% CI that materialized (meaning that
many other results may be compatible with the data). The extreme results
for Company 3 may be due to small sample size, where natural variability is
highly likely to be behind the outliers.

When comparing the results of our family with the findings of the exper-
iments on TDD published so far, we conclude that there does not appear to
be much difference for TDD novices between TDD and the control approach
(since the difference in our family is small, as are the both positive and nega-
tive differences in most of the published experiments). Thus, to date, at least,
TDD novices seem to perform similarly or slightly better with the control ap-
proach than with TDD in experiments. This contrasts with the results usually
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reported in case studies, where vast improvements are usually achieved with
TDD (ranging from 22% [P8] to 267% [P35]). We hypothesize that at least
the following reasons may be influencing this disparity.

First, we think that the duration of the studies may be influencing the re-
sults. In particular, as experiments usually span only a few days or weeks and
case studies usually span months or years, case study participants benefit more
from TDD as a result of a longer exposure to the approach. In other words,
TDD may only show its benefits after it has been internalized by developers,
and this process may take more than a few days or weeks. To check this hy-
pothesis, we propose to run further experiments with TDD novices that have
been trained in, and have used, TDD for several months (or at least weeks)
before the experiment takes place. We also propose to run experiments with
TDD experts vs. control approach (e.g., waterfall model or ITL) experts to em-
ulate the case study situation—where participants are already knowledgeable
about both development approaches.

Second, we single out the unit of analysis (i.e., solo, pair programming, or
teams) as a possible reason behind the different results reported in the litera-
ture. According to the results that we observed in the literature at least, the
studies that measured quality for the whole development team (i.e., measured
the quality of a system after it had been developed by a team of developers)
achieved more optimistic results for TDD than others that measured quality
just for solo or pair programmers. To check this hypothesis, we propose to run
further experiments to compare the performance of solo programmers, pair
programmers and teams with TDD again to emulate the case study situation.

Third, we think that the mixed profile of the participants in case studies
(different participants have different experience levels) is another possible rea-
son for the difference in the results that we observed between the literature
and our family of experiments.

Fourth, the real benefits of TDD could be due to short development cycles
rather than test-first development. This has been observed by Fucci et al.
[20] in one of the experiments cited in this paper. This would explain why
TDD performs better when the waterfall model, instead of ITL, is used as the
control.

Finally, we should underscore the fact that, despite our attempts to keep
the experimental configurations of the experiments as alike as possible (al-
though we were obliged to adapt their programming environments and change
their experimental designs at times), there was still a noticeable heterogeneity
of outcomes within our family. This indicates that there is a slight incon-
sistency across the results of the different studies. Consequently, moderator
variables that could be affecting the outcomes need to be studied, as hetero-
geneity suggests that the characteristics of the experiments may be impacting
their results. In the following, we try to identify the extent to which the differ-
ent characteristics of the experiments are causing the detected heterogeneity
of results.

We do not think that companies developing different types of software per-
form differently. While Company 1 and Company 3 develop betting software
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for online gaming, Company 2 develops electronics software, and Company
4 develops software for supplies management (water, internet, telephone and
television). If this were the case, Company 1 and Company 3 should show con-
sistent results. But according to Figure 4, Company 1 and Company 3 have
very different results. However, this could be explained also by the low sample
size of Company 3. On the other hand, Company 1, Company 2 and Company
4 seem to show consistent results.

Even though we do not focus on the length and rhythm of the development
cycles with TDD (see [20] for an extended discussion on this point), our results
appear to be consistent with the observations made by Karac and Turhan
[29]. In particular, both TDD and ITL perform similarly within our family
of experiments. Besides, working on small, well-defined tasks (such as BSK,
rather than MR) also seems to translate into higher external quality.

5 RQ2: Task

Throughout this section we answer RQ2: To what extent is quality affected by
the task under development? We think that this is a relevant issue. Although
MR and BSK are of similar complexity, their specifications do not have the
same granularity (BSK is fine-grained, while MR is coarse-grained). This could
benefit either (ITL or TDD) or both of the approaches in terms of quality. In
order to answer this research question, we present the descriptive statistics
and the analysis for the task in Section 5.1. Then, we discuss and compare our
findings with the outcomes published in the literature in Section 5.2.

5.1 Analysis for Task

Table 7 shows the sample sizes (N), means, standard deviations (SD) and
medians of the quality scores achieved with each task in all the experiments
within our family (experiments are organized in the same order as in Table
3). The mean quality achieved with BSK goes from as high as M = 65.34 at
University 2 to as low as M = 23.81 at Company 4. The means for MR go
from as high as M = 67.11 at Company 3 to as low as M = 7.46 at University
8.

Table 8 shows the ANOVA table corresponding to the analysis that we
undertook to assess the influence of task and treatment on quality. As we can
see, the task under development has a statistically significant effect on qual-
ity. This suggests that the task being developed influences quality consistently
(i.e., either increasing or decreasing the quality scores achieved with both de-
velopment approaches), meaning that participants achieve higher quality in
some tasks compared to others. Besides, as the interaction between the task
and the treatment is not statistically significant, this means that the task un-
der development is not responsible for the difference in performance between
TDD and ITL—as, after all, the task has a similar impact (either increasing
or decreasing) on the quality scores of both development approaches.
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Table 7 Summary statistics for quality by experiment and task.

Experiment Task N Mean SD Median

University 1

MR 8 10.96 17.31 2.81
BSK 8 50.22 24.94 43.75
MP 7 25.44 13.21 24.39
SDK 7 41.76 28.73 23.08

Company 1
MR 16 44.24 39.34 45.51
BSK 17 65.13 36.25 83.93

Company 2
MR 20 53.53 25.55 63.73
BSK 20 26.36 21.71 22.14

University 2
MR 43 36.24 28.80 39.33
BSK 44 65.34 30.08 76.56

University 3
MR 48 17.37 16.27 9.55
BSK 53 40.54 20.86 32.81

Company 3
MR 6 67.11 40.02 81.46
BSK 4 58.48 26.10 59.82
SS 4 43.16 13.45 46.36

Company 4
MR 8 12.64 14.89 8.43
BSK 7 23.81 26.64 12.82
SS 8 15.48 14.00 10.71

University 4
MR 20 17.74 24.87 7.30
BSK 20 61.89 24.46 70.18

University 5 BSK 34 41.47 24.22 45.54
University 6 BSK 71 38.40 28.54 29.69
University 7 BSK 63 40.20 25.93 23.44

University 8
MR 22 7.46 20.54 0.56
BSK 19 63.07 30.30 76.19

Table 8 ANOVA table for quality: task by treatment.

Factor Chisq Df p-value
Treatment 1.148 1 0.28
Task 60.05 1 <.001
Treatment:Task 0.08 1 0.78

We complement the results of the ANOVA table with the marginal means of
the interaction (i.e., the average quality scores achieved with each combination
of task and treatment) in Table 9.

Table 9 Marginal means for quality: task by treatment.

Task Treatment Estimate 95% CI

MR
ITL 29.36 (17.65, 41.06)
TDD 24.95 (16.95, 32.97)

BSK
ITL 49.22 (39.13, 59.30)
TDD 46.46 (38.92, 54.01)

As we can see in Table 9, the quality scores achieved for MR are consid-
erably lower than those achieved for BSK with both development approaches.
Besides, the difference in performance between ITL and TDD for both tasks is
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small—although ITL achieves slightly higher quality than TDD for both MR
and BSK. The difference in the level of detail of the specifications may have
boosted the performance of the participants when developing BSK (see [28]
for further research on this issue).

Key findings

– Some tasks lead to higher quality scores than others regardless of the
development approach applied.

– The task under development does not appear to be responsible for the
difference in quality between TDD and ITL.

5.2 Discussion of Task

As we have seen, the task being developed seems to affect consistently—either
increasing or decreasing—the quality scores achieved with both TDD and ITL.
The reason for this could be tasks having different intrinsic properties that
cause some tasks having a greater design complexity/difficulty than others.
For example, the MR specification is coarse-grained and BSK is fine-grained.
This could explain why BSK gets a better performance. These results are in
line with those of Tosun et al. [53]. On the other hand, there does not appear
to be any combination of task and development approach that boosts quality.

This has certain implications. First, as the task being developed seems
to affect quality similarly regardless of the development approach applied,
the task cannot be blamed for the difference in performance between TDD
and the control approach. Extrapolating this finding to the results published
in the literature of TDD, we hypothesize that as long as the same task is
developed with TDD and the control approach, the task is unlikely to be behind
the heterogeneity of results observed so far. However, as quality largely depends
upon the developed task, if a different task is developed with each development
approach (e.g., Task 1-ITL, Task 2-TDD), this may lead to completely different
quality scores. This may have happened to us before in one of our experiments
on TDD [52], where, although we thought that BSK and MR were similar,
TDD-BSK clearly outperformed ITL-MR. Now that we have decoupled the
effect of the task and the treatment in our experiments, we find that the task
determines quality to a larger extent than the actual development approach.

Finding that the task being developed has a noticeable influence on quality
has implications in terms of experimental design. In particular, as quality is
largely dependent upon the task developed, if different tasks are developed in
an experiment, the variability of the quality scores will increase (as either large
or small quality scores will be achieved). Thus, if we run a between-subjects
experiment, where different tasks are implemented within each treatment, the
variability of the quality scores in each treatment will rise, whereas the statis-
tical power will plummet. This will result in wider 95% CIs (i.e., less precise
results) for the experiment [14,18], the effects of which are shown in the for-
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Fig. 5 Forest plot: students vs. professionals
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est plot in Figure 4. In particular, notice how, despite Universities 8 and 5
having identical sample sizes (i.e., 41 participants each), the 95% CI for Uni-
versity 8 (where both BSK and MR were developed with each development
approach) is wider than for University 5 (where only BSK was developed with
each development approach). In view of this, we recommend either the use of
only one task in between-subjects experiments or the substitution of between-
subjects experiments for within-subjects experiments if experimenters want to
evaluate more than one task. If within-subjects experiments are run instead of
between-subjects experiments, the extra variability introduced by the different
tasks should cancel out during data analysis. This is because each participant
acts as his or her own baseline in within-subjects experiments, and, thus, the
potential correlation between participant scores may counterbalance the ex-
tra variability introduced by the different tasks. Additionally, the low mean
quality achieved with MR at University 8 could be explained by the fact that
University 8 follows a crossover design according to which MR is implemented
in the first session and BSK in the second session. The implementation of the
most complex/difficult task in the first session could lead to a lower mean.
Note that MP and SDK are used only in one experiment (University 1), and
SS is used in two experiments only (Company 3 and Company 4).

In summary, there is a need for further studies investigating why task
complexity or code visibility impacts quality, along the lines of Tosun et al.
[53].

6 RQ3: Experiment-Level Moderators

Throughout this section, we answer RQ3: To what extent is quality affected
by the characteristics of the experiments: participant type (i.e., professionals
vs. students), programming environment (i.e., Java vs. C++/C# and related
IDEs and testing tools), learning effects from one session to another, or order
of application of ITL and TDD? Note that one of the reasons for conducting
families of experiments is to hypothesize on experiment-level moderators that
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may be influencing the results [47]. For this purpose, we assess the influence
of the participant type, programming environment, learning effects, and the
order of application in Sections 6.1, 6.2, 6.3 and 6.4, respectively. We then
discuss and contextualize our findings in Section 6.5.

6.1 Participant Type

At the beginning of our article, we hypothesized that participant type (i.e.,
students vs. professionals) may be influencing the results of the studies pub-
lished so far on TDD. In view of this, we studied the impact of participant
type on the results in our family of experiments. Table 10 shows a summary
of the results of the sub-group meta-analysis that we undertook to assess
this point. Figure 5 shows the corresponding forest plot. As Figure 5 and
Table 10 show, the magnitude of the joint result for the students sub-group
(M = −5.82, 95% CI =(-15.06, 3.43)) is smaller than for the professionals
sub-group (M = −10.05, 95% CI =(-22.54, 2.45)).

Table 10 Sub-group meta-analysis: students vs. professionals.

Group N Estimate 95% CI I2

Students 7 -5.82 (-15.06, 3.43) 71.1%
Professionals 4 -10.05 (-22.54, 2.45) 52.8%
Difference 4.23 (-38.23, 14.21) -

Additionally, as Table 10 shows, performance for professionals degrades
to a larger extent than for students using TDD (the Difference row in Ta-
ble 10 indicates that the performance of professionals using TDD drops more
than M = 4.23 points ’on-average’ than for students). Thus, in relative terms,
performance by professionals with TDD drops almost twice as much as for stu-
dents. We also find that, although participant type does appear to influence
results, there is still a noticeable heterogeneity of results in both sub-groups.
Thus, other variables rather than participant type may be influencing results.
Finally, Table 11 shows the estimated quality scores of students and profes-
sionals divided by the development approach.

Table 11 Marginal means for quality: participant type by treatment.

Treatment Group Estimate 95% CI

ITL
Students 40.47 (29.19, 51.75)
Professionals 49.53 (31.66, 67.41)

TDD
Students 35.61 (30.37, 40.85)
Professionals 38.26 (28.33, 48.18)
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Fig. 6 Forest plot: programming environment.
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As we can see in Table 11, professionals achieve higher quality than stu-
dents for both TDD and ITL.

Key findings

– Professionals achieve higher quality than students with both TDD and
ITL.

– However, the drop in performance of professionals applying TDD as
compared to ITL almost doubles that of students.

6.2 Programming Environment

At the beginning of our article, we hypothesized that the programming en-
vironment (i.e., the programming language, IDE, testing tools, etc.) may be
behind the heterogeneity of results observed in the literature. Thus, we as-
sessed the extent to which this may be influencing results in our family of
experiments. Table 12 summarizes the results of the sub-group meta-analysis
that we undertook to assess the influence of the programming environment
(i.e., Java/JUnit/Eclipse vs. C++/C# and related technologies13) on results.
Figure 6 shows the corresponding forest plot. Table 13 shows the estimated
quality scores for the different programming environments divided by the de-
velopment approach.

As we can see in Table 12, Figure 6, and Table 13, ITL achieves higher
quality than TDD for both the Java programming environment (M = −6.86,
95% CI =(-18.05, 4.31)), and the C++/C# programming environment (M =
−7.57, 95% CI =(-15.11, -0.03)). Additionally, the difference between the re-
sults achieved with both programming environments is negligible (M = 0.707,

13 In our experiments, the IDEs and testing tools used with C++ and C# are different. In
this study, however, we make the simplification of considering them as being a part of the
same group of technologies merely for the purposes of comparison.
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Table 12 Sub-group meta-analysis: Java vs. C++/C#.

Group N Estimate 95% CI I2

Java 8 -6.86 (-18.05, 4.31) 74%
C++/C# 4 -7.57 (-15.11, -0.03) 31.88%
Difference - 0.707 (-12.78, 14.19) -

Table 13 Marginal means for quality: programming environment by treatment.

Treatment Group Estimate 95% CI

ITL
Java 43.83 (32.13, 55.53)
C#/C++ 41.25 (22.25, 60.26)

TDD
Java 35.77 (30.08, 41.47)
C#/C++ 37.55 (28.82, 46.29)

Fig. 7 Forest plot: learning effects.
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95% CI =(-12.78, 14.19)). Finally, there is still a considerable amount of het-
erogeneity in the sub-group formed by the experiments with the Java environ-
ment, albeit not as much in the sub-group with C++/C# technologies. We put
this lower I2 statistic in the C++/C# sub-group down to the small number of
experiments and, thus, to the potentially lower accuracy of the I2 statistic [51].

Key findings
The programming environment does not appear to affect the difference in
performance between TDD and ITL.

6.3 Learning Effects on Treatments

As we acknowledged when discussing the design of our experiments, the partic-
ipants in within-subjects experiments applied not one but both development
approaches. As a result, they could learn something during the first session
that could boost their performance in the second session and may influence the
results achieved. To assess the extent to which this was the case in our family
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of experiments, we compared the results of the experiments where the partici-
pants applied both development approaches (i.e., both the AB within-subjects
experiments and the crossover experiment), with the experiments where the
participants just applied one (i.e., the between-subjects experiments). Table
14 summarizes the results of the sub-group meta-analysis that we undertook.
Figure 7 shows the corresponding forest plot. Table 15 shows the estimated
quality scores of learning effects divided by development approach.

Table 14 Sub-group meta-analysis: within vs. between.

Group N Estimate 95% CI I2

Within 8 -7.66 (-18.36, 3.04) 78.22%
Between 4 -4.89 (-12.5, 2.71) 0%
Difference - -2.76 (-15.89, 10.36) -

Table 15 Marginal means for quality: learning effects by treatment.

Treatment Group Estimate 95% CI

ITL
Within 44.38 (32.08, 56.69)
Between 40.78 (24.34, 57.24)

TDD
Within 36.54 (30.51, 42.58)
Between 35.98 (28.20, 43.75)

As we can see in Table 14, Figure 7, and Table 15, the sub-group formed
by the within-subjects experiments provides less optimistic results for TDD
(M = −7.66, 95% CI =(-18.36, 3.04)) than the sub-group formed by the
between-subjects experiments (M = −4.86, 95% CI =(-12.5, 2.71)). However,
as the difference of results between both sub-groups is small (M = −2.76) and
TDD was applied in the second session in seven out of the eight within-subjects
experiments—and, thus, we would expect more optimistic results for TDD—
we hypothesize that learning effects did not materialize. However, this needs
further study. Besides, whereas the sub-group of within-subjects experiments
still provides largely heterogeneous results, the sub-group of between-subjects
experiments provides homogeneous results. Again, this may be the result of
the low number of between-subjects experiments in our family, leading to low
I2 statistic accuracy in this sub-group.

Key findings
The participants do not appear to have learned anything during the first
session that boosted their performance in the second session.
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Fig. 8 Forest plot: order effects.
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6.4 Order of Treatment Application

In the discussion of the design of our experiments, we hypothesized that the
order of application of ITL and TDD may affect the results. In particular, if
the participants applied ITL before TDD, the participants may learn some-
thing during the application of ITL (e.g., how to develop in small iterations)
that may potentially boost their performance later in the TDD session. In or-
der to check the extent to which this may have influenced the results, we ran
a crossover experiment (i.e., an experiment in which participants apply TDD
and ITL in a different order) within our family. If the results of this experiment
turned out to be similar to the findings of the other within-subjects experi-
ments, then the order of application of TDD and ITL should not be affecting
results. Table 16 summarizes the results of the sub-group meta-analysis that we
undertook to assess the influence of the order of application (i.e., AB within-
subjects experiment vs. crossover experiment) on results. Figure 8 shows the
corresponding forest plot. Table 17 shows the estimated quality scores of the
different orders of application divided by development approach.

Table 16 Sub-group meta-analysis: AB Within vs. Crossover.

Group N Estimate 95% CI I2

AB Within 7 -8.73 (-20.33, 2.86) 81.13%
Cross 1 3.22 (-20.62, 27.06) -
Difference - 11.96 (-14.55, 38.47) -

As we can see in Table 16, Figure 8, and Table 17, the results of the
crossover experiment (M = 3.22, 95% CI =(-20.62, 27.06)) are way more
optimistic than for the AB within-subjects experiments (M = −8.73, 95%
CI =(-20.33, 2.86)). However, this result should be regarded with caution as
we conducted only one crossover experiment (i.e, University 4), and the re-
sults of two AB within-subjects experiments (i.e., University 3 and Company
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Table 17 Marginal means for quality: order of treatment.

Treatment Group Estimate 95% CI

ITL
AB Within 45.54 (27.53, 63.54)
Crossover 38.20 (-7.87, 84.28)

TDD
AB Within 36.27 (25.58, 46.96)
Crossover 41.42 (14.29, 68.55)

3, see the forest plot in Figure 5) were even more optimistic than the findings
of the crossover experiment. Finally, there is a large heterogeneity of results
in the sub-group of AB within-subjects experiments. This may be due to the
participation of professionals and students with different levels of experience
across the experiments.

Key findings
The order of application of the development approaches may be affecting
results. However, more crossover experiments are needed to assess this issue.

6.5 Discussion of Moderators at Experiment Level

We learned that the professionals achieved higher quality than the students
with both ITL and TDD in our family. This finding was at odds with the re-
sults of the self-assessment questionnaires that we handed out to participants,
where most students classed themselves as being at least as experienced as
professionals. This observation may be related to the Dunning-Kruger effect
[32]. Other SE community members (e.g., [3,25]) have observed this effect
before. In short, the Dunning-Kruger effect suggests that the knowledge limi-
tations of the respondents—in this case students—may bias their perceptions
when rating their skills, which may lead to over-optimistic self-assessments. We
hypothesize that this may have led the students to rate themselves as more
experienced than professionals—despite their poorer performance with both
TDD and ITL. In view of the results in our family of experiments and of others
in the SE community [3,25], self-assessment questionnaires—contrary to what
Feigenspan et al. reported [17]—may, therefore, be unsuitable for describing
experience within heterogeneous populations. However, we put this forward as
a hypothesis and suggest that further studies be conducted to assess the extent
to which this hypothesis holds. Additionally, we call for further research aiming
to develop new measuring instruments for capturing participant experience in
SE empirical studies.

Although professionals achieved higher quality than students with both
ITL and TDD, the performance of professionals with TDD compared to ITL
dropped more than for students. This may suggest either that students learn
completely new development approaches—such as TDD—faster than profes-
sionals (and, thus, students manage to minimize their expected losses when
applying a completely new development approach) or that professionals have
higher opportunity costs—because they achieve higher quality scores with ITL
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than students—and, therefore, the drop in their performance when applying
TDD is greater than for students. Again, these findings are at odds with out-
comes published in the TDD literature, where professionals usually benefit
most from TDD. We put this contradictory evidence in the literature down to
either the longer duration of the studies in which professionals participate—
who, as a result, have more time to get used to TDD—or the level at which
quality is measured in these studies (i.e., quality measured at team level at
the end of system development rather than for solo programmers). In any
case, our recommendation is to run longitudinal studies with students and pro-
fessionals to learn whether it is participant type—or other participant-related
characteristics like age—that are behind the different learning rates (or oppor-
tunity costs) or experiments with TDD experts to learn whether, after enough
exposure, TDD significantly outperforms control approaches.

We also learned that the programming environment affected the perfor-
mance of both ITL and TDD similarly in our experiments—and thus, the
difference in performance between ITL and TDD was unaffected by the pro-
gramming environment. In other words, the different programming environ-
ments did not affect the results of the experiments that we ran. In view of
this, we recommend that the programming environments be adapted to the re-
quirements of the host institutions when conducting experiments. This should
increase the external validity of the results (as TDD will be evaluated in po-
tentially more diverse programming environments), and the internal validity
of the results (as participant unfamiliarity with the programming environment
used could interfere with their ability to apply the development approaches).
Three out of four experiments using the C programming environment led to
negative results in our family. This observation is at odds with the results typ-
ically achieved in case studies, where C environments are only associated with
positive results. These conflicting results may be due to the many variables on
which such case studies and our experiments differ.

We ended by assessing the extent to which the learning effects from one
session to another or the order of application of the development approaches
affected the results of our experiments. We learned that the results of the ex-
periments were unaffected by whether the participants applied both ITL and
TDD or just one of the development approaches. In other words, no learning
effects appeared to materialize in our experiments. In view of this, we recom-
mend that within-subjects instead of between-subjects experiments be run to
evaluate the performance of TDD. This increases both the external validity of
results (as more than one task needs to be exercised in within-subjects exper-
iments) and the precision of results (as the participants are assessed against
themselves, which reduces the variability of the results [14,18]). It also accom-
modates the above recommendation related to the effects of the task being
developed on results. Finally, we noticed that the order of application of TDD
(i.e., in the first session, or in the second session) may be affecting results. How-
ever, as we only ran one crossover experiment within our family, and as two of
the AB within-subjects experiments provided even more extreme results than
the crossover experiment, we recommend that more crossover experiments be
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run to assess the extent to which the order of TDD application affects the
results.

Finally, we found that there was still a large heterogeneity of results in al-
most all of the sub-groups that we analyzed (except the sub-group composed
exclusively of between-subjects experiments with students). This suggests ei-
ther that there are more experiment-level characteristics impacting the results
within each sub-group or that the different participant characteristics across
the experiments are responsible for this heterogeneity of results. Unfortunately,
further sub-dividing the sub-groups according to other experiment-level char-
acteristics would affect the reliability of the resulting estimates (as fewer ex-
periments would contribute towards the joint result in each sub-group [10]).
Thus, we think that the only option open to try to explain the heterogeneity
of results would be to study how participant characteristics impacted TDD
performance. However, as we changed the scales of the questionnaires in our
experiments—and our questionnaires may not have accurately captured the
different participant experience either—we are unable to study this in our fam-
ily. We suggest that a family of experiments be run with improved instruments
for measuring this characteristic in the future.

7 RQ4: Participant-Level Moderators

Throughout this section, we answer RQ4: To what extent is quality affected
by the participant characteristics: programming, programming language, unit
testing or testing tool experience? Note that another reason for conducting
families of experiments is to hypothesize on participant-level moderators that
may be influencing the results [47]. For this purpose, we assess the influence of
participant characteristics for professionals and students separately in Sections
7.1 and 7.2, respectively. Then, in Section 7.3, we discuss and contextualize
our findings.

7.1 Professional Characteristics

Tables 18 and 19 show the ANOVA p-values and marginal means for the inter-
action between treatment and each participant characteristic in Questionnaire
1 (37 participants) and Questionnaire 2 (17 participants). Figures 9 and 10
show the corresponding profile plots. Note that downward-sloping lines in the
profile plots indicate greater experience and lower quality for TDD with re-
spect to ITL (the opposite applies for upward-sloping lines).

The exploratory analyses of the data for professionals suggest that pro-
fessionals with more programming, programming languages, unit testing, and
testing tools experience perform worse with TDD compared to ITL. In order
words, the more experience professionals have, the larger the drop in quality
with TDD compared to ITL is. This holds in both questionnaires.
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Table 18 Treatment by participant experience interaction: Questionnaire 1 for profession-
als.

Characteristic Estimate 95% CI p-value
Treatment:Programming -5.08 (-21.55, 11.38) 0.53
Treatment:Prog. Language -0.47 (-16.82, 15.89) 0.95
Treatment:Unit Testing -8.01 (-29.22, 13.20) 0.45
Treatment:Testing Tool -6.56 (-55.70, 42.58) 0.79

Table 19 Treatment by participant experience interaction: Questionnaire 2 for profession-
als.

Characteristic Estimate 95% CI p-value
Treatment:Programming -14.07 (-39.73, 11.59) 0.26
Treatment:Prog. Language -15.32 (-30.27, -0.37) 0.05
Treatment:Unit Testing -23.26 (-44.81, -1.72) 0.04
Treatment:Testing Tool -39.18 (-61.83, -16.55) 0.00

Fig. 9 Profile plot: mean difference in quality (TDD-ITL) for professionals per experience
level in Questionnaire 1.
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Fig. 10 Profile plot: mean difference in quality (TDD-ITL) for professionals per experience
level in Questionnaire 2.
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Key findings
The more programming, programming languages, unit testing, and testing
tool experience professionals have, the worse they perform with TDD in
comparison to ITL.
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7.2 Student Characteristics

Tables 20 and 21 show the ANOVA p-values and marginal means for the inter-
action between treatment and each participant characteristic in Questionnaire
1 (73 participants) and Questionnaire 2 (261 participants). Figures 11 and 12
show the corresponding profile plots.

Table 20 Treatment by participant experience interaction: Questionnaire 1 for students.

Characteristic Estimate 95% CI p-value
Treatment:Programming 9.27 (-12.49, 31.04) 0.39
Treatment:Prog. Language 17.53 (-3.22, 38.28) 0.10
Treatment:Unit Testing -12.59 (-44.52, 19.33) 0.43
Treatment:Testing Tool -12.11 (-46.61, 22.39) 0.48

Table 21 Treatment by participant experience interaction: Questionnaire 2 for students.

Characteristic Estimate 95% CI p-value
Treatment:Programming 3.32 (-5.83, 12.47) 0.47
Treatment:Prog. Language 3.84 (-5.77, 13.45) 0.43
Treatment:Unit Testing 1.12 (-10.01, 12.25) 0.84
Treatment:Testing Tool -1.34 (-13.33, 10.65) 0.82

Fig. 11 Profile plot: mean difference in quality (TDD-ITL) for students per experience
level in Questionnaire 1.
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The exploratory analyses of students tell a different story. In particular,
greater programming-related (programming and programming language) ex-
perience tends to benefit TDD. This holds for both questionnaires.

Key findings

– More programming-related experience tends to benefit TDD.
– More testing-related experience tends to benefit ITL.
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Fig. 12 Profile plot: mean difference in quality (TDD-ITL) for students per experience
level in Questionnaire 2.
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7.3 Discussion of Moderators at Participant Level

As for professionals, greater testing-related (unit testing and testing tool) ex-
perience tends to benefit ITL. The results are similar for both questionnaires—
although more unit testing experience in Questionnaire 2 has a negligible posi-
tive effect on TDD. We hypothesize that this may be because professionals may
be seasoned users of test-last approaches—more in line with waterfall model
development. Thus, they may find it easier to continue with their usual devel-
opment habits and more difficult to break with them and move towards new—
and perhaps less intuitive—test-first development approaches (like TDD). It is
as if their previous programming habits lead to a higher resistance to change—
at least when applying the new approach in a single experimental session.

On the contrary, when the students apply TDD rather than ITL, quality
drops are comparatively smaller than for professionals. We hypothesize that
this may be because students with previous programming experience may be
more flexible than professionals about learning completely new development
approaches (such as TDD). In fact, they may have not acquired such strong
development habits as professionals and, in this sense, may be less resistant
to change. In this regard, students with a lot of programming experience may
be benefiting from what [6] referred to as TDD’s virtuous cycles: creating a
test first and then implementing a small functionality to pass that test may
increase developer focus and, possibly, performance. However, this is more
noticeable for students who have quite a lot more programming experience
than their peers.

We hypothesize that the negative influence of student testing experience on
TDD performance may be because students with more testing experience may
be more used to creating tests after seeing the implemented code. The reverse
development approach applied in TDD may, especially if students are short
on programming experience, impinge on their ability to implement new tests.
After all, designing a test for an as yet unimplemented functionality is likely
to slow down their progress if they do not have a clear idea of how it should
be implemented. This may help to explain why students with a lot of testing
experience benefit more from use of ITL—as, with ITL, they implement the
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code first, which facilitates test development (and matches their programming
approach).

Finally, students’ lower resistance to change—and, possibly, in view of
our observations, greater motivation or flexibility to learn new development
approaches—may have led them to minimize their quality losses when applying
TDD over ITL with respect to professionals.

As these analyses are exploratory, we put forward these claims as mere
hypotheses. We note that the effect of participant experience on the perfor-
mance difference between TDD and ITL tends to be larger with smaller sample
sizes for both students and professionals (i.e., with Questionnaire 1—attaching
years of experience to experience levels—for students, and with Questionnaire
2—not attaching years of experience to experience levels—for professionals).
This may be because there are influential points (i.e., points with abnormally
high X values—in our case, reported experience levels) that pull the regression
lines towards each other, especially if sample size is small [41]. In the case of
students, this may happen because regression lines are pooled towards the re-
sults of only a few participants declaring >10 years of experience. In the case of
professionals, this may happen because the regression lines are pooled towards
the results of only a few participants declaring large subjective experiences—as
we observed that most professionals tended to be conservative when reporting
their experience.

Finally, we find that the influence of experience on results flattens out
with larger sample sizes (as with Questionnaire 2 and students, where 261
participants were analyzed). This may suggest that either: (1) experience levels
influence the performance achieved with ITL or TDD similarly when results
are more accurate [14]; or (2) the self-assessment questionnaires that we used
did not capture participant experience—as when sample sizes get larger, the
influence of the experience on results flattens out as random noise.

8 Threats to validity

8.1 Statistical Conclusion Validity

We relied upon parametric statistical tests (i.e., t-tests and linear mixed mod-
els [11,14,18]) to analyze the data of our family of experiments. We relied upon
the robustness of the t-test to departures from normality when analyzing the
data of our experiments [48,55,57]. To double-check, we have also analyzed the
data of the experiments with non-parametric tests (i.e., the Wilcoxon signed
rank test for within-subjects experiments, and the Wilcoxon rank sum test
for between-subjects experiments [18]), and computed the corresponding non-
parametric effect sizes for each individual experiment (i.e., the point biserial
correlation following [44]), and their variances. Finally, we pooled the effect
sizes—and their respective variances—using meta-analysis. The observed re-
sults are consistent with parametric test outcomes.
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We relied upon the central limit theorem to analyze the data of all the
experiments together with linear mixed models [34]. We ensured the robustness
of the results that we provided by meta-analyzing the data with both one-stage
and two-stage IPD models [43]. In the spirit of open-science and to ensure the
transparency of results, we uploaded the experimental data of the family and
the statistical analyses that we ran to a GitHub repository.

We acknowledge that the exploratory analyses made on participant expe-
rience may increase the risk of committing inflated type I error rates. To avoid
this problem, we focus more on the magnitude and sign of moderator effects—
and their corresponding 95% CIs—than on their statistical significance.

8.2 Internal Validity

We acknowledge that, as our experiments were designed merely to prove that
the development approach caused an effect on quality (as we just randomized
participants to tasks and treatments), we are not able to draw any cause-effect
relationships for the other variables that we investigated [33] (e.g., participant
type, programming environment, etc.). This is because differences across ex-
periment results could have been caused either by the variable under inves-
tigation (e.g., the participant type) or unacknowledged variables confounded
with the investigated variable (e.g., professionals were older than students,
and, thus, participant age could be the real cause behind the differences in the
results). Still, we think that these analyses may serve to foster further research
and as a proxy for understanding the heterogeneity of results reported in the
TDD literature.

We acknowledge that, as our experiments are embedded within training
courses (which meant that no participant had any previous experience), there
is a selection bias.

We acknowledge that the distinction between students and professionals is
controversial, and this could have an impact on our results (as some students
may also be working in industry, and some professionals may also be studying)
[16,50].

We acknowledge that different test oracles may lead to different results,
and therefore the chosen test oracle may be impacting results.

We also acknowledge that, although the IDEs and testing tools used with
C++ and C# are different, we make the simplification of considering them as
being a part of the same group of technologies in this study.

We acknowledge that the Hawthorne effect14 might have occurred. How-
ever, it would affect TDD and ITL equally.

14 A type of reactivity in which individuals modify an aspect of their behavior in response
to their awareness of being observed.
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8.3 Construct Validity

We acknowledge that evaluating the source code with tests not written along-
side the code might influence results. However, this applies to both ITL and
TDD.

We acknowledge that, although we followed similar approaches to those
suggested in SE [16,17] for designing our experience questionnaires, the ques-
tionnaires may not be accurately capturing the participant characteristics.
We also acknowledge that the change of scales in some experiments did not
help during the meta-analysis phase. However, we provide testimony that self-
assessment questionnaires may be unsuitable for assessing the characteristics of
heterogeneous populations and also call for further research aiming to develop
new measurement instruments in order to evaluate participant characteristics
in joint analyses in the future. A possible solution could be to ask participants
about the number of programming courses they have taken, the number of
projects they have worked on, or how many years they have been working in
industry.

Notice that we do not check treatment conformance. Participants may have
applied a hybrid approach instead of ITL and TDD, which may have affected
the construct validity of our studies. However, none of the empirical studies
on TDD check treatment conformance either.

Additionally, other issues, such as the average development cycle duration,
duration uniformity and refactoring effort, rather than the code/test writing
order could pose a challenge [29].

Finally, we acknowledge that the hypothesis guessing threat might have
materialized [58]. People taking part in an experiment might try to figure out
what the purpose and intended result of the experiment is. They are then likely
to base their behavior on their guesses, acting either positively or negatively
depending on their attitude towards the anticipated hypothesis.

8.4 External Validity

Due to space restrictions, we focused on external quality only throughout this
article, omitting other quality attributes (e.g., internal quality, maintainabil-
ity, etc. [1]). We selected external quality as it is one of the attributes that—
according to its proponents [2,6]—TDD benefits most. Also it is one of the
most studied attributes so far in the TDD literature [9,12,31,35,37,42,49],
thus allowing for further comparisons of results. Having said this, we acknowl-
edge that our findings are limited exclusively to external quality. Therefore,
our results may not be representative of what may happen with other quality
attributes.

As usual in SE experiments [58], we had to rely on toy tasks to evaluate the
performance of TDD and ITL. We relied on toy tasks similar to the ones used
in [P9],[15,20,52]. The downside of the use of toy tasks is a loss of realism,
where our results may not be representative of what may happen when devel-
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oping real industrial projects. Although this is a potential threat to external
validity (effects might not be apparent on such small sized programs), it has
the advantages of increasing internal validity like:

– The possibility of observing task development within a controlled environ-
ment and thereby ensuring that external factors do not affect the achieved
quality.

– The possibility of comparing the results achieved with both TDD and ITL
on an identical experimental task (since both TDD and ITL are applied
to code an identical experimental task, say, BSK). In turn, this helps to
ensure that differences across treatment results are not due to the different
experimental tasks being developed with each treatment (as is the case if
both treatment and task go hand in hand—e.g. Waterfall Model-System 1
vs. TDD-System 2, as is typical in industrial case studies).

– The possibility of comparing the results from industrial experiments and
academic experiments—as if professionals had developed industrial tasks
and students, toy tasks, the difference in the results across experiments
could have been caused either by participant type (i.e., professionals vs.
students) or by the different task types developed (either industrial tasks
or toy tasks).

Having said this, we acknowledge that our findings are limited exclusively
to toy tasks. Therefore, our findings may not be representative of what may
happen when developing real-life industrial systems. However, we expect our
results to be representative for professionals and students who are starting to
learn the TDD process when developing toy tasks.

We discarded the data for three tasks (i.e., MP, SDK and SS) when study-
ing the effect of task on results. We did this because each task was used in at
most two experiments, and we did not have enough data to provide accurate
results. We acknowledge that this decision may have limited the external va-
lidity of our findings with regard to the effect of the task on results. However,
considering that MR and BSK influence both ITL and TDD similarly, we see
no reason why MP, SDK or SS should behave differently. Still, this deserves
further study.

We acknowledge that, as our experiments are embedded within training
courses and participants are novices and not experienced people, the general-
ization of results is limited to TDD novices only.

9 Conclusions

Most of the studies published so far on TDD claim that TDD outperforms
control approaches with regard to external quality [9,12,31,35,37,42,49]. How-
ever, the extent to which TDD outperforms control approaches seems largely
dependent upon a myriad of yet to be discovered variables [40]. The disaggre-
gation of the results of the TDD studies published so far according to their re-
search methods (i.e., case studies, surveys, experiments), participant type (i.e.,
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professionals vs. students), task type (toy task vs. industrial project), unit of
analysis (i.e., solo programmers, pair programmers, or teams), project length
(i.e., days, weeks, months or years), and programming environment (i.e., Java
vs. C/C++/C# technologies) could provide further insight. In particular, we
found that, while the most optimistic results for TDD tend to be achieved in
case studies conducted over months or years with development teams coding
industry-relevant systems, the results achieved in the studies where TDD is
evaluated either on solo or pair programmers for toy tasks tend to be more
conservative. We put this down to the shorter time frame in which experiments
are run compared to case studies. In particular, TDD may not ”click”, and
improve external quality, until after a fairly long exposure time. The many
changes made across the studies complicate the aggregation of results, and
the identification of the variables that are impacting the results.

We adopted a different approach to provide joint results and identify vari-
ables impacting results: we conducted a family of experiments composed of
four industrial experiments and eight academic experiments. We used identi-
cal tasks and response variable operationalizations across all the experiments.
We adapted the experimental configurations to the restrictions of our indus-
trial partners. We evaluated the extent to which the shortcomings of these
experimental configurations impacted the results by altering the configura-
tions of the academic experiments that we ran and comparing their results.
We provided joint results and assessed the potential effects of the experimental
changes using meta-analysis [10].

With our family, we learned that TDD novices seem to perform slightly
better using iterative test-last development (i.e., ITL, the reverse approach of
TDD according to Erdogmus et al. [P9]) than with TDD in terms of quality.
We also learned that the task under development consistently affects—either
increasing or decreasing—the quality scores achieved with both TDD and ITL
for TDD novices. Finally, we reached the conclusion that there is no ’wonder’
task that boosts quality with a particular development approach: whatever
affects TDD, also affects ITL, and vice versa.

Then we learned that although professionals achieve higher quality than
students with ITL and TDD, their performance with TDD dropped more than
for students. We hypothesize that this may be because either professionals and
students have different learning rates or professionals have higher opportunity
costs when applying TDD. However, further experiments are needed before we
can make definite claims regarding this issue—as the difference in performance
between TDD and ITL for professionals and students was not statistically sig-
nificant. Additionally, we learned that self-assessment questionnaires may not
be informative for describing the characteristics of heterogeneous populations:
the students in our family seemed to be overrating their expertise because they
were not sufficiently knowledgeable. Neither the programming environment,
nor the learning effects from one development approach to another influenced
the results of our experiments. The order of application of TDD (i.e., before or
after ITL) may be affecting the results. However, more experiments are needed
to assess the extent to which this holds.
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In view of our findings, we acknowledge that the differences in results ob-
served between case studies and surveys, on the one hand, and experiments,
on the other (i.e., positive vs. negative, respectively), may be influenced by the
fact that experiment participants were not previously familiar with the TDD
process. Consequently, we call for experiments with TDD experts to be run in
order to eventually be able to ascertain whether the optimistic results achieved
in case studies with TDD are also reproduced in experimental settings. Based
on our findings, we also recommend adapting the programming environments
of the experiments to host institution demands, using as few tasks as necessary
to evaluate the performance of TDD and the control approach, favoring the
execution of within-subjects over between-subjects experiments to assess the
performance of TDD, designing new measuring instruments to measure partic-
ipant experience, and running further studies to study the effect of participant
characteristics on results.

Throughout this article, we argue that, while most empirical studies show
that TDD outperforms control approaches (e.g., ITL or waterfall model), the
extent of this outperformance appears to be dependent upon a great many
variables. In addition, despite the many years of TDD research, little is yet
known about how TDD performs in industrial experiments [40]. In view of this
and the results of our family of experiments, we conclude:

– As the results of the experiments in which the participants applied both
ITL and TDD and others in which they applied just one approach were
similar, we recommend running within-subjects experiments instead of
between-subjects experiments to increase the precision of results.

– As the programming environment does not appear to influence the results
of the experiments, we hypothesize that differences across study results
in the literature are unlikely to be caused by the different programming
environments.

– The task under development seems to have a similar influence—either in-
creasing or decreasing—on quality with both ITL and TDD. Thus, as long
as the same task is developed with TDD and the control approach in a
study, differences across study results are unlikely to be caused by the dif-
ferent tasks being developed. However, as quality seems largely dependent
upon the task being developed, we recommend either: (1) the use of only
one task in between-subjects experiments so as not to increase the variabil-
ity of the data and, thus, lower the precision of results; or (2) the execution
of within-subjects experiments so as to cancel out the extra variability po-
tentially introduced by different tasks.

– As a range of variables—different study durations, experiment partici-
pant unfamiliarity with TDD, the control approach (e.g., waterfall model)
used for the performance comparison with TDD in case studies, or sys-
tem complexity—may be behind the conflicting results of case studies and
surveys, on the one hand, and experiments, on the other (i.e., positive vs.
negative, respectively), more experiments investigating these variables are
needed to assess these hypotheses.
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Finally, we have made the experimental data generated by the participants
in our family (i.e., their Java and Visual Studio solutions), their raw data (i.e.,
their external quality scores, treatment to task assignments and experience-
level variables) and the R code that led to the results reported throughout
this study available in a GitHub repository. Hopefully, this could be used by
other SE researchers to run their own studies and round out our conclusions.
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