
University of Novi Sad
DSpace-CRIS Repository https://open.uns.ac.rs

2021-09

How Templated Requirements
Specifications Inhibit Creativity in
Software Engineering

R. Mohanani, P. Ralph, B. Turhan, Mandić Vladimir
IEEE

R. Mohanani, P. Ralph, B. Turhan, and Mandić, Vladimir. 2021. How Templated Requirements
Specifications Inhibit Creativity in Software Engineering. IEEE Transactions on Software
Engineering: 1–1. doi: 10.1109/TSE.2021.3112503.
https://open.uns.ac.rs/handle/123456789/32427
Downloaded from DSpace-CRIS - University of Novi Sad

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

1

How Templated Requirements Specifications
Inhibit Creativity in Software Engineering

Rahul Mohanani, Paul Ralph, Burak Turhan, Senior Member, IEEE and Vladimir Mandić, Member IEEE

Abstract—Desiderata is a general term for stakeholder needs, desires or preferences. Recent experiments demonstrate that
presenting desiderata as templated requirements specifications leads to less creative solutions. However, these experiments do not
establish how the presentation of desiderata affects design creativity. This study, therefore, aims to explore the cognitive mechanisms
by which presenting desiderata as templated requirements specifications reduces creativity during software design. Forty-two software
designers, organized into 21 pairs, participated in a dialog-based protocol study. Their interactions were transcribed and the transcripts
were analyzed in two ways: (1) using inductive process coding and (2) using an a-priori coding scheme focusing on fixation and critical
thinking. Process coding shows that participants exhibited seven categories of behavior: making design moves, uncritically accepting,
rejecting, grouping, questioning, assuming and considering quality criteria. Closed coding shows that participants tend to accept given
requirements and priority levels while rejecting newer, more innovative design ideas. Overall, the results suggest that designers fixate
on desiderata presented as templated requirements specifications, hindering critical thinking. More precisely, requirements fixation
mediates the negative relationship between specification formality and creativity.

Index Terms—Cognitive bias, software design, fixation, critical thinking, requirements, requirements engineering, protocol analysis.

F

1 INTRODUCTION

D IFFERENT organizations initiate new software projects
in many different ways. For teams developing con-

sumer applications and enterprise systems, however, the
initiation process often seems to include:

• speaking with prospective users and other stake-
holders about their needs, wants, preferences, etc.;

• synthesizing stakeholders’ opinions into some docu-
ments;

• determining the main features that the product will
have; and

• creating mock-ups and diagrams illustrating the
main features and user interfaces.

These activities can be sequential, parallel, in different
orders and performed by the same or different people.
Nevertheless, it raises an obvious question—what kind of
documents are best for synthesizing stakeholders’ opinions?
Different areas of research seem to have reached different
conclusions.

The more positivist side of requirements engineering
(RE) research tends to assume that software projects have
discoverable and documentable requirements, and that un-
derstanding these requirements is critical for designing
good software systems [1], [2]. It seeks to elicit unambigu-
ous, consistent, complete, feasible, traceable and verifiable
requirements [3]. Good requirements specifications should

• R. Mohanani is with fortiss, Munich, Germany.
E-mail: rahul.mohanani@gmail.com, mohanani@fortiss.org

• P. Ralph is with the Faculty of Comp. Sci., Dalhousie Univ., Canada.
E-mail: paul@paulralph.name

• B. Turhan is with M3S Group, Univ. of Oulu, Finland.
E-mail: turhanb@computer.org

• V. Mandić is with the Faculty of Tech. Sci., Univ. of Novi Sad, Serbia.
E-mail: vladman@uns.ac.rs

lead to good software designs [4] because meeting require-
ments is what ‘good’ means.

Contrastingly, the more naturalistic side of RE, as well
as research in human–computer interaction, user–centred
design, and the interdisciplinary design literature tends to
assume that:

• software projects do not have discoverable and doc-
umentable requirements (cf. [5]);

• stakeholders do not even have stable, retrievable
preferences (cf. [6]); and

• products have numerous stakeholders who do not
agree on the problem(s) to solve or how the product
should solve them (cf. [7]).

Forcing vague, unstable, conflicting preferences into un-
ambiguous, consistent requirements specifications encour-
ages designers to converge prematurely on oversimplified
problems and inappropriate solutions [8]. Eliciting tem-
plated requirements specifications should therefore lead to
designs that satisfy contracts but not users, which is anti-
thetical to user–centred design.

Our previous work showed that presenting a set of
desiderata as templated requirements specifications led to
less creative product designs than presenting exactly the
same desiderata as uncertain ideas. [9], [10]. However, ex-
periments like these are not suitable to explore cognitive
mechanisms underlying causal effects, so we have evidence
that the presentation of desiderata affects creativity but we
don’t know how. This raises the following research question.

Research question: How do fixation and critical thinking
explain reduction in design creativity when desiderata are
presented as templated requirements specifications?

Here, fixation means the tendency of the designers to pay
excessive and undue attention to the given problem by

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

2

readily converging on an available or known solution (cf.
[11]); critical thinking is defined as “disciplined thinking
that is clear, rational, open-minded, and informed by ev-
idence” [12]. Design creativity, for our purposes, denotes
the originality and practicality of new product concepts.
Desiderata are properties of a real or imagined system that
are wanted, needed or preferred by one or more project
stakeholders [13]. We use this term because it helps us
remember that the set of things a stakeholder wants and
the set of things needed for a system to succeed do not
always coincide. While requirements specification is defined
as “a statement that identifies a capability or function that is
needed by a system in order to satisfy its customer’s needs”
[14], templated requirements specification (TRS) is requirements
specification written in a specific syntactic structure using a
restricted (controlled) natural language [15], in this case, for
example, “The system shall facilitate diet planning”.

Next, we review existing literature (Section 2). Then, we
describe our research design including data collection and
analysis (Section 3), followed by the results (Section 4). Sec-
tion 5 discusses the theoretical framework and summarizes
the study’s implications and limitations. Section 6 concludes
the paper with a summary of its contributions.

2 BACKGROUND

This section summarizes the major concepts involved in this
study: desiderata, task structuring, creativity and fixation.

2.1 The concept of desiderata

In the most extreme positivist view of RE, requirements are
a property of the environment, which are motivated by the
desires, wants and needs of the stakeholders [16], [17]. Re-
quirements analysts elicit them, and success means fulfilling
them. Since social reality is real and objective, requirements
exist in the world, waiting to be discovered. Project success
means meeting and satisfying the requirements.

In the naturalistic view of RE and the constructivist view
of product design, requirements do not exist in an objective
reality [5], [18], [19] waiting to be discovered. Reality is
socially constructed. Stakeholders usually have unstable,
unreliable, conflicting desiderata [6], [20] and use different
processes and representations to express their opinions. Re-
search in RE has tried to organize and manage these conflicts
and inconsistencies among stakeholders to elicit require-
ments. Some of the techniques include the ViewPoints—a
framework that facilitates capturing, representing and orga-
nizing multiple stakeholders’ viewpoints and perspectives
[21], conflicts and goal–modelling [22] and AbstFinder—a
tool that helps finding abstractions and textual ambiguity in
natural language text [23]. Project success then means de-
livering benefits to stakeholders [24]. Fundamentally, RE is
about establishing a balance between the positivist approach
where desiderata are considered as a singular truth embod-
ied in the form of a formal specification, and the naturalistic
approach where requirements are a product of the conflicts
and contradictory viewpoints of the stakeholders involved
(cf. [25]).

Practically, the main difference in the above discussion
is what happens when a stakeholder demands that the

system has some property or fills some need. In the posi-
tivist view, the optative speech act of demanding manifests
a requirement [26]. In the multi-perspective constructivist
view, the stakeholder’s demand is just an opinion of note;
the demanded property may be a necessary condition for
success, irrelevant, or even prevent success. This manuscript
assumes the latter.

2.2 Task structuring

Problems are often conceptualized on a spectrum of well-
structured to ill-structured. “Well-structured problems are
constrained problems with correct or convergent solutions
that require the application of a limited number of rules
and principles within well-defined parameters; whereas, ill-
structured problems possess multiple solutions and fewer
parameters that are less manipulable and contain uncer-
tainty about the concepts, rules, and principles that are
necessary for the solution, the way they are organized and
which solution is best” [27, p. 65]. A body of empirical
research shows that task structure is negatively associated
with design performance (cf. [28] for summary). “Over-
concentration (over-structuring) on problem definition does
not necessarily lead to successful design outcomes” [29,
p. 439] for at least four reasons:

1) less specific goals reduce cognitive load [30], which
leads to more learning;

2) less specific task framing results in more creative
solutions [31];

3) designers often fixate on experience [32] or on an
initial set of ideas [33]; and

4) designers often process whatever little information
they have and quickly assimilate it into the prob-
lem schema, improving their understanding of the
problem [34].

Perhaps unsurprisingly, then, our recent experiments
showed that presenting desiderata as TRS reduced creativity
[9], [10]. We hypothesized that presenting desiderata as TRS
triggers a specific cognitive bias, which we call require-
ments fixation. Fixation broadly refers to the tendency to
“disproportionately focus on one aspect of an event, object,
or situation, especially due to self-imposed or imaginary
obstacles” [11, p. 5]. Requirements fixation, then, is the
tendency to attribute undue confidence and importance to
desiderata presented as TRS. We use the term requirements
fixation to allude to similarity to design fixation: the well-
established tendency for designers to generate solutions
very similar to given examples [35] or existing artifacts [36].

Although the precise mechanism by which increasing
task structure reduces design performance and creativity
remains unclear, design expertise seem to moderate the
relationship. Expert designers tend to resist initial problem
framing (e.g. given TRS) and proceed via an improvised,
solution-focused approach [37]. Expert designers consider
all problems ambiguous and ill-structured, focusing on so-
lution generation rather than analysing the given problem
[29], [38]. On the other hand, novice designers often treat ill-
structured problems as well-structured, thereby compromis-
ing the potential for creative solutions [39]. However, recent
research suggests that novice designers as compared to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

3

more experienced designers, are less fixated on the problem
domain and, hence, are able to generate highly creative
solutions [40], [41].

2.3 Creativity
RE is a creative process [42], [43], where analysts and multi-
ple stakeholders collaborate to make sense of a problematic
situation and conceptualize a common mental model of
a possible system [44]. In RE, creativity enhancing work-
shops (e.g., [45]) are extensively used to provide clarity
for requirements identification [46], [47] and generate novel
and creative requirements [48], [49]. In these workshops,
creativity is often linked with divergent thinking [50], i.e.,
exploring multiple and diverse solutions to a given problem.
While Brainstorming helps in generating most number of
requirements, Hall of Fame approach (viz., [51]) helps in
developing multiple creative requirements [52]. In another
study, interactive collaboration techniques employed during
the workshops helped in generating more creative require-
ments [48]. In a nutshell, requirements can be understood
as entities that encapsulate the results of creative thinking
about the system being developed [53].

Research in RE also focuses on ways to discover and
generate creative requirements by leveraging the way in
which problem situations and early ideas are represented.
One study preferred using user stories to explore novel
ideas, which were then used to measure the personality
traits and creative potential of the participants influencing
their creative abilities [54]. In another study, high-level
goals, represented as goal models (viz., [55]), were combined
with creativity enhancing techniques to explore and gen-
erate creative requirements [56]. Integrating the concept of
combinational creativity (viz. [57]) with use cases (e.g., [58])
and creativity enhancing framework (e.g., [59]) are also used
to discover and develop creative requirements.

Creativity, itself, is a poorly-understood, multi-
dimensional construct [60], [61]. However, creativity research
can be organized into the “Six P’s” (viz., [62], [63]), as
follows: 1) creativity’s underlying cognitive process; 2) the
creative product; 3) the person (or personality) doing the
creative work; 4) the place (or context) of the creative work;
5) stimulating creative thinking (or persuasion) and 6) im-
proving creative potential.

Here, we are primarily concerned with product creativity.
Product creativity is entails two dimensions: (1) novelty or
originality [64], [65] and (2) practicality or usefulness [66],
[67]. Therefore, we conceptualize creativity as the ability
of a designer to choose both novel and practically useful
features, graphical elements and aesthetic properties of a
software system.

2.4 Fixation
Cognitive biases are systematic deviations from optimal rea-
soning [68]. Since software engineering involves lots of rea-
soning, cognitive biases help to explain common problems
in software design [69], [70], testing [71], [72], requirements
engineering [73], [74] and project management [75].

Fixation is a cognitive bias in which “blind adherence
to a set of ideas or concepts limit[s] the output of concep-
tual designs” [32]. Several experiments have demonstrated

design fixation—the tendency for designers to generate so-
lutions very similar to given examples [32], [35] or existing
artifacts [36]. The cognitive mechanisms underlying design
fixation are not well understood. However, [35] suggest that
designers may fixate on a known but limited set of ideas or
an existing body of knowledge, and classify design fixation
into three broad categories:

1) Unconscious adherence—designers depend too
heavily on ideas encoded in long term memory,
sometimes due to heavy load on working-memory.

2) Conscious blocking—designers dismiss new ideas
due to over-dependence and confidence on their old
ideas or past experience.

3) Intentional resistance—designers intentionally re-
sist new ideas to designs that were previously suc-
cessful.

Meanwhile, design fixation is moderated by several factors:

1) The domain; for instance, mechanical engineers fix-
ate more than industrial designers [76];

2) examples—common examples causes more fixation
than unusual or rare examples [77];

3) defixating instructions—explicit instructions to
avoid features of given or existing artifacts [78];

4) providing good quality examples than flawed or no
examples lead to better design performance [79];

5) product dissection activities [80]; and
6) physical prototyping [81].

SE research shows that inconsistency in requirements
specifications may reduce premature commitment [82].
More generally, the way a task is communicated or pre-
sented may also cause fixation [83], [84]. This is related
to the framing effect—“the tendency to give different re-
sponses to problems that have surface dissimilarities but are
formally identical” [85, p. 88]. Desiderata can be presented
in many different forms, including TRS, personas, scenarios,
use cases and requirements statements. We can think about
these forms as different ways of framing a design task, and
task framing affects design performance [9], [10], [86].

While, the underlying cognitive mechanisms that re-
duces creativity of design concepts due to TRS are not yet
well explored, our recent experiments in SE (e.g., [9], [10])
suggest a typical behavior where designers tend to shut
down their creative potential by further inflating the high
importance and confidence connoted by the TRS.

3 RESEARCH DESIGN

3.1 Dialog-based protocol analysis
To answer our research question, we need real-time insight
into software designers’ cognitive processes. Think-aloud
protocol analysis is a research methodology in which partici-
pants verbalize thought sequences. Researchers analyze par-
ticipants’ words for insight into their thinking. Researchers
assume that “any concurrent verbalization produced by a
subject while solving a problem is a direct representation
of the cognitive functioning (i.e., mental processes) of the
subject’s working memory” [87].

However, verbalizing our thought process probably
changes those thought processes in imperceptible ways.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

4

Fig. 1. Overview of the data collection and analysis process

We can mitigate this limitation using dialog-based protocol
analysis [88], in which participants work in pairs or groups,
and we analyze their natural dialog instead of a forced
monologue.

Protocol analysis is common in design studies [89], psy-
chology (e.g. [87]), medicine (e.g. [90]) and software engi-
neering [88], [91]. We see protocol studies as most consistent
with a critical realist philosophy of science (cf. [92]).

3.2 Purpose and scenario
The purpose of this study is to determine why presenting
desiderata as TRS reduces design creativity. To do so, we
observe participants in a simulation of a situation where
a software team is given a set of TRS and then asked to
design an appropriate application. Although RE and high-
level designing are increasingly merged (e.g., [93]–[95]),
such situations arise often in outsourcing arrangements
(where the outsourcer provides a questionable requirements
specification and expects the team to develop mock-ups
without much access to prospective users or client represen-
tatives). In our experience, many software teams that have
stakeholder access still have specifications forced upon them
by clients, management, marketing or other stakeholders.
Fig. 1 summarizes our research protocol.

An alternative question—whether modeling desiderata
as TRS harms creativity in teams that both create the TRS
and then design the product—is potentially fruitful avenue
of future work. We did not attempt such a simulation
because it is inconsistent with the prior experiments we are
attempting to re-examine and entails numerous unresolved
methodological problems [96, section 1.3].

3.3 Participants and pairing
We recruited a convenience sample of 18 professional soft-
ware developers (14 men, 4 women) from Company X,
which develops web and mobile applications for govern-
ment agencies, corporations and educational institutions.
Company X has 30 employees, with a typical project du-
ration of 2-3 years. We selected Company X because it was
willing to participate due to close ties to one of the authors.
These participants had a mean age of 31 years (σ = 5.65).

Meanwhile, we recruited 24 post-graduate students (21
male, 3 female) enrolled in the information processing
science program at the first author’s university. Student
participants had a mean age of 23 years (σ = 6.07). They
received extra credit in one of their courses for participating.

While professional participants had a mean work expe-
rience of 5.6 years, student participants had a mean work

experience of 2.3 years. All participants had at least 1 year
of experience in software design. However, none of the
participants had any experience with developing health and
fitness applications—the domain used here. Participants
were paired based on availability. Each pair comprised
either two professionals or two students.

3.4 Execution of the study

The study was approved by the University of Auckland
Human Participants Ethics Committee (UAHPEC), New
Zealand. We facilitated and supervised the data collection
from September to December, 2016, at Company X’s office
for the professionals and at the students’ university. Every
participant–pair was scheduled an individual session in a
quiet room. On arrival, the study was described and partic-
ipants signed a consent form and completed a demographic
questionnaire.

We used the same task as our previous experiments [9],
[10]. The task document listed 25 desiderata presented as
TRS and organized into five priority levels: high, high–
medium, medium, medium–low and low. Each TRS began
with “The system shall” (consistent with [3]) and phrased
as, for example, “The system shall measure calorie intake”, “The
system shall recommend activities” and so on. Crucially, many
of the desiderata presented in this task are ill-considered,
inconsistent or over-complicated. The TRS was compiled to
engender skepticism.

The participants were also given identical design tem-
plates comprising blank, mobile screen–sized boxes in por-
trait and landscape orientations with space for written ex-
planations. Participants were then asked to generate con-
ceptual designs of a health and fitness mobile application.
Participants could use as many templates as needed. The
participants were encouraged to discuss their thoughts
while creating designs.

The first author acted as facilitator for both groups.
Sessions were limited to 60 minutes at Company X’s request.
Students were also limited to 60 minutes for consistency.
During each session, the facilitator took notes, reminded
participants to stick to English and prompted participants
who made design moves without discussion.

We piloted the study once to check the recording equip-
ment. No subsequent changes were made to the task or the
study procedure. All task documents including the TRS and
their qualities are available in our replication package (see
Section 7).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

5

TABLE 1
Summary of process coding analysis

Theme Example labels Example quotations and dialogues

Making de-
sign moves

Discussing design
moves

“OK, you’re on the intake page or seeing just the intake, and then you will have a small button.”
“A-ha, so it could be like..” “icon, something like this..” “Yeah” (P15)

Generating multiple de-
sign options

“We can add into the ‘diet screen’ an option to recommend.” “Or rather it should be over
here...you select and you search.” (P2)

Making moves “We can have help me button to propose exercise. And eat this meal or skip, best practice to
reach goal” “The BMR is calculated after this segment screen you have all the information” (P2)

Uncritically
accepting

Accepting features of
existing examples

“You have all the history, in one click. And here you have, most of the fitness apps like FitBit
have this, so, why not use it?” “Yeah, okay” (P2)

Accepting priorities “If we have to design an app that shows all these five requirements that are on a high priority,
we would probably want to have all the data on one screen” (P16)

Accepting requirements “So now we have requirement number 5, to provide workout history and performance analysis”
“Yeah, that could be on the main page that given history and performance analysis” (P11)

Rejecting Rejecting design moves “I just thought we could split the screen and it shows you the current activity and any previous
activities” “No, it can still show the previous one. Let’s stick to this way for now” (P16)

Rejecting requirements
due to no knowledge

“So on to requirement 10, we shouldn’t consider much on this one?” “Yeah.. it’s more like a
system requirement, I don’t know...let’s move on” (P13)

Rejecting specifications
due to time constraints

“Well the analysis screen would be the most complicated one. I don’t think we have time for
that now” “Yeah, let’s check other ones” (P6)

Grouping Grouping seemingly
similar requirements

“So recommend recipes and recommend workouts and recommend diet food, all could be
groped as one. They all say recommend“ “Yeah, okay” (P11)

Grouping as input-type
data

“We put a dashboard feature” “like for input data” “Yeah, let’s group them as input data” (P1)

Grouping requirements
of same priority level

“The first two high priority tasks of measuring calorie intake and what user eats and drinks is
the same thing” “That’s true” “So those are kind of easy to put together...” (P15)

Questioning Questioning priority
levels

“The system must allow the user to plan workout...this isn’t very important. Shall track speed
and distance..this is very important” “Me too” (P21)

Questioning existing
examples

“They FitBit app have sensors and they can do precise measuring.. running is based on GPS.”
“Yeah, maybe we should do something else. GPS is not always good and reliable.” (P3)

Questioning require-
ments

“We don’t have to include all the. But, why would someone, why would you listen to music?”
(P2)

Assuming Assuming on behalf of
the users

“How we will measure calories in it. Will user write?” “Maybe he will write” “Okay, I suppose”
(P9)

Assuming relative im-
portance

“Now, what is the most important thing to the user, to know the amount of calories or what he
actually ate? I think the calories are the most important than other ones here” (P8)

Assuming time limita-
tions

“This cannot be done in one hour.” “No definitely not. I’m not sure, if I have an idea” (P6)

Considering Consistency “Have a graph that tells the amount of workout and sleep” “That maintains consistency” (P9)

quality Usability “I think this screen must be very easy and quick to use. It just can’t be a massive calendar” (P12)

criteria Responsiveness “Or you can make it like, responsiveness, more like on smaller screens to change the design, so
I make it for that one.” “Maybe we could make it smaller” (P5)

3.5 Data collection and analysis

The sessions were transcribed by the first author. Although
we did not correct participants’ grammar or malapropisms,
we removed verbal static (e.g., “um”, “ah”, “uh”). We refer
to each transcript by a unique identifier starting with a ‘P’.
P1–P9 are the professionals; P10–P21 are the students.

We envisaged the data analysis in two phases: 1) in-
ductive process coding to explore the cognitive mecha-
nisms used by the participants; 2) deductive closed coding
using concepts from existing literature to re-analyze the
data through a specific theoretical lens. We used NVIVO
(www.qsrinternational.com) to organize, analyze and vi-
sualize the qualitative data. The coding process is briefly
described as follows:

1) The first author performed process coding of all the
transcripts (see Section 3.5.1).

2) The second and the third author audited process
coding.

3) The auditing resulted in renaming some of the codes
(e.g. doing design was renamed to making moves);
some codes were combined together or rejected
altogether (e.g. avoiding options and rejecting moves
were combined to rejecting design moves).

4) The first and the second author performed closed
coding of one transcript together to ascertain the
coding scheme (see Section 3.5.2).

5) The first author then coded the rest of the tran-
scripts.

www.qsrinternational.com

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

6

6) The second and the third author audited closed
coding.

7) The auditing resulted in minor changes such as
adding new codes to the instances of fixation or crit-
ical thinking (e.g. rejecting design moves was added to
fixation).

3.5.1 Process coding
We began by analyzing the data using inductive process
coding [97]. That is, we coded each transcript line-by-line
using gerunds (i.e., words ending with ‘-ing’). Each as-
signed label reflected the action contained in dialogues that
shared similar characteristics (e.g., accepting requirements,
discussing design moves). As the analysis progressed, some
labels were reworded, subsumed by other similar labels or
dropped. All codes that conveyed a particular process (i.e.,
action) were further categorized together to form themes,
where a theme was seen as a high level conceptualization of
multiple labels grouped together [98]. The saturation point
was reached by the 14th transcript, i.e. no new labels or
themes emerged on from the remaining seven transcripts.

3.5.2 Closed coding
Our previous experiments suggested the tendency of partic-
ipants to get fixated on desiderata when presented as TRS.
The effects of fixation can be minimized by a critical eval-
uation of the problem situation. Any attempt to critically
evaluate the TRS should help participants to avoid fixating
on the given TRS. Therefore, we applied an a priori coding
scheme to compare instances of fixation against instances
of critical thinking. Here, fixation refers to instances where
participants: 1) accept aspects of the task (i.e., requirements,
priority levels) without any discussion or reflection; 2) adopt
properties of known examples without any discussion or
reflection; or 3) reject, without any discussion or reflection,
new ideas that diverge from given task structure or known
examples. Critical thinking meanwhile refers to instances
where participants critically evaluate or deviate from task
parameters or known examples. In other words, if partic-
ipants question something, but then accept it, we label it
as critical thinking. We then counted these instances and
compared.

4 RESULTS

This section presents the results from both analyses.

4.1 Process coding
Process coding produced seven themes, each of which we
interpret as a distinct cognitive activity. Table 1 summarize
the evidence for each themes, while the complete analysis is
available in our replication package (see section 7).

4.1.1 Making design moves
A design move is a change to a design description [99].
Considering and making design moves was the participants’
most frequent activity. We found a total of 48 instances in
fourteen groups where participants willingly tried to come
up with multiple design ideas, reflected on those ideas and
then made a move by selecting the most optimum one.

However, participants in nine groups made design moves
only intending to satisfy all the given requirements without
assessing or reflecting on them. Out of these, six groups only
tried to meet the requirements prioritized as high or high–
medium.

4.1.2 Uncritically accepting
We observed participants uncritically accepting their initial
design ideas and aspects of the task (e.g., requirements,
priority levels) without any discussion or reflection. Par-
ticipants were keen to adopt and force features of existing
examples into their design concepts without assessing the
existing designs. We observed imbalances in the pairs where
Partner A would immediately accept Partner B’s ideas,
while Partner B would unthinkingly reject Partner A’s ideas
whenever they diverged from Partner B’s ideas.

4.1.3 Rejecting
Another pattern that emerged was the tendency of partic-
ipants to explicitly reject any requirements or design ideas
for various reasons (e.g., ambiguity, difficulty). Moreover,
participants appeared reluctant to satisfy requirements pri-
oritized as low or medium–low and requirements about
which they had no knowledge. Participants would either
temporarily ignore a high-priority requirement, or would
permanently dismiss a requirement. When participants re-
ject requirements, they often did so without any discussion,
reflection or evaluation. Thirteen pairs explicitly rejected
any idea or design move that diverged from their first
design concept. We observed both uncritically accepting
initial ideas (as discussed above) and uncritically rejecting
new ideas that diverge from initial ideas.

4.1.4 Grouping
Fourteen of the pairs made sense of the desiderata by group-
ing requirements they perceived as similar. Out of these,
eight groups were based on the priority levels provided,
others on other sorts of similarity. For example, grouping
given requirements as non-functional features or as pop–
up notifications. Subsequent design moves appear to be
informed by these groups. The tendency of participants to
focus on grouping only high priority requirements while
avoiding the low priority ones (we observed a total of 47
such instances) can be related to participants’ uncritical
acceptance of priority levels and task presentation more
generally.

4.1.5 Questioning
While participants often uncritically accepted aspects of
the task (see section 4.1.2), they questioned others. Here,
questioning refers to critically appraising something. Ques-
tioning is related to but distinct from rejecting. Sometimes
participants questioned something before rejecting it; other
times participants questioned something before accepting
it; and other times participants rejected something without
really questioning it first. Typically, one participant would
raise doubts about a something (e.g., requirements, priority
levels, existing examples). The pair would then discuss
and come to a consensus about accepting or rejecting the
concept. Participants also backtracked on their earlier design
moves based on their evolving understanding of the task.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

7

4.1.6 Assuming

Eleven pairs made explicit assumptions about the task. These
assumptions were basically cognitive shortcuts that partici-
pants used to help them create designs easily with minimal
information processing. We consider these assumptions as a
deviation from the real or the observable facts. Participants
appeared to speculate and derive at rather specific conclu-
sions about how they perceived the requirements, instead of
making actual sense of the problem situation. Five groups
unreasonably perceived high priority requirements as more
important than other low priority ones (e.g., counting calo-
ries as more important than recommending workouts);
while other groups would over-estimate the effort required
by creating self-imposed time-constraints. Participants also
assumed a requirement (e.g., workout recommendation)
was non-functional and jumped to conclusions about the
complexity of initial design ideas.

4.1.7 Considering quality criteria

While planning the designs, participants would often express
the need for certain aesthetic qualities for their solution de-
signs. Participants in nine groups explicitly tried to change
or alter their design moves for various quality criteria
including usability, consistency of user experience, system
responsiveness, speed, stability and aesthetics.

4.2 Closed Coding

This section presents the results of our closed coding. We
identified 1006 instances of fixation compared to 298 in-
stances of critical thinking. Table 2 presents the list of labels
classified in each category and the corresponding number
of instances of each label. Below, we briefly discuss each
category and interpret our findings.

4.2.1 Fixation

All of the participants showed a tendency to agree and to
accept instantaneously aspects of the task. We found 178
instances of participants accepting requirements without
question and 145 cases of accepting priority levels without
question. Participants appeared to accept task structure
without any discussion of or reflection on the importance
or the validity of the given desiderata. We also found 41
instances where pairs explicitly rejected new design ideas
because they diverged from the initial design ideas.

Moreover, we found 517 instances where participants ex-
pressed complete confidence and extensively favored their
initial (i.e., early) ideas by avoiding any speculation, dis-
cussion or reflection. We observed 79 cases across 19 pairs
where participants tried to conceptualize their solution de-
signs based on either a successful example or their previous
experience. For example, “And also, kind of integration with
Spotify or, another provider like Pandora like in other health fitness
app I have come across” “We should do exactly that” (P1).

In 22 instances, participants said or implied that the sys-
tem should satisfy all of the requirements; in ten instances
participants said or implied that the system should satisfy at
least all of the high and medium–high priority requirements.
This is surprising because the requirements are intentionally
dubious (as explained in Section 3.4).

4.2.2 Critical thinking
We found substantially fewer instances where participants
attempted to think about the task parameters critically.
In 199 instances pairs critically discussed design moves.
However, these discussions were mainly about planning
and organizing the way the application would look, and less
about selecting the best option from multiple design options
or assessing the importance of the given requirements. We
observed eleven instances in six pairs of backtracking on
their earlier design decisions. Such instances were char-
acterized by participants reflecting on their initial design
decision, followed by discussing alternative ideas and then
selecting the one perceived as most appropriate. Some par-
ticipants explicitly tried to generate multiple design options.
We found very few instances where participants critiqued or
reflected on the specific aspects of the task itself. Six pairs
questioned priority levels with 14 instances; only two pairs
expressed overall doubts about the requirements with four
instances.

Similarly, we found nine instances of participants ques-
tioning the available technology and six instances of chal-
lenging existing examples. (Note: we did not provide exam-
ples; participants looked up examples on their own during
the study.) Only three groups attempted to generate ideas
that were not evident from the task materials, found in
similar applications or generated by other groups. Only
one pair expressed the need to consult the client to clarify
specific ambiguous requirements.

4.2.3 Differences between students and professionals
Table 3 summarizes the differences between the profession-
als and the students. Professionals had more instances of
both fixation and critical thinking than students; however,
these differences are not statistically significant (Indepen-
dent samples t-tests with effect size via Cohen’s d; fixation:
t = 0.49, p = 0.63, d = 0.23 ± 0.87; critical thinking:
t = 0.91, p = 0.37, d = 0.42 ± 0.89). Moreover, the ratio
of fixation to critical thinking 1 is almost identical (0.76
professionals vs. 0.78 for students). In other words, both
students and professionals seem about equally susceptible
to fixation.

Surprisingly, months of development experience is pos-
itively correlated with fixation (Pearson correlation; r =
0.528; p = 0.014)—see Fig. 2—but uncorrelated with critical
thinking (r = −0.93; p = 0.689). In other words, more
experienced developers were more prone to fixation. While
these are post hoc tests on convenience samples, the results
question the idea that fixation is limited to amateurs or that
experience naturally mitigates it.

5 DISCUSSION AND IMPLICATIONS

5.1 Theory

Previous work [9], [10], [31] showed that presenting desider-
ata as TRS diminished creativity, which undermines SE
success. The purpose of this study is to investigate how pre-
senting desiderata as TRS diminishes creativity; that is, the

1. F̄ /(F̄ +C̄) where F̄ is the mean number of actions associated with
fixation and C̄ is the mean number of actions associated with critical
thinking

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

8

TABLE 2
Closed coding analysis

Pairs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Total

Category 1: Fixation
Accepting early ideas 37 11 21 10 21 10 42 50 34 19 24 32 17 22 27 16 39 14 24 31 16 517
Accepting reqs 10 2 4 5 10 12 5 3 7 6 14 8 23 8 7 12 15 7 8 5 7 178
Accepting priorities 12 8 5 3 9 7 11 7 2 9 5 8 7 4 6 7 9 9 11 2 4 145
Accepting features of existing examples 3 6 12 - 3 2 2 5 3 3 4 7 3 5 4 2 4 - 2 3 6 79
Rejecting design moves 2 5 4 2 - 7 - 4 2 - - - 2 1 - 2 - - 2 6 2 41
Trying to satisfy all reqs 1 3 2 1 - 3 - 4 2 - - - 2 - - - - - 4 - - 22
One participant accepts others decision - - - - - 5 - - - - - - 3 - - - - - 6 - - 14
Trying to satisfy high priority reqs 2 1 - - - 1 - 1 - 2 - - - - - 1 - 1 - - 1 10

Total instances of fixation 67 36 48 21 43 47 60 74 50 39 47 55 57 40 44 40 67 31 57 47 36 1006

Category 2: Critical thinking

Discussing design moves 4 15 8 2 9 9 4 16 13 12 19 7 5 12 17 3 11 14 5 8 6 199
Generating multiple design options - 9 5 1 2 1 6 5 3 - - 5 - - - 2 2 1 - 4 2 48
Questioning priority levels - - 2 2 - - - - - - 3 - 1 - - - - 3 - - 3 14
Backtracking on earlier decisions - - - - 2 - 1 3 - 2 - - - 1 - - - - - - 2 11
Questioning available technology - 2 - - 1 - 1 - - - - - - 1 1 - - 2 - 1 - 9
Questioning existing examples 2 - 2 - - - - 1 - - - - - - - - 1 - - - - 6
Generating innovative ideas - 2 - - - 2 - - 1 - - - - - - - - - - - - 5
Questioning reqs - 2 2 - - - - - - - - - - - - - - - - - - 4
Questioning client’s needs - - 2 - - - - - - - - - - - - - - - - - - 2

Total instances of critical thinking 6 30 21 5 14 12 12 25 17 14 22 12 6 14 18 5 14 20 5 13 13 298

TABLE 3
Differences between students and professionals

Professionals Students

Mean instances of fixation 49.67 46.67
Mean inst. of critical-thinking 15.87 13
Range (fixation) 21–74 31–67
Range (critical thinking) 5–30 5–22
Fixation ratio1 0.76 0.78

Fig. 2. Scatterplot of experience (months) vs. fixation (instances)

Fig. 3. Theoretical framework

Note: Boxes indicate constructs; arrows indicate causality; plus
and minus signs indicate direction of effect.

cognitive mechanism mediating the previously established
causal relationship. The results of this study suggest that
providing designers with TRS induces requirements fixation
and hinders critical thinking, thereby negatively affecting
creativity (see [9], [10]); as shown in Fig. 3—see Table 4 for
construct definitions.

The simulation reported above shows that participants
given TRS have many more instances of fixation than crit-
ical thinking. Furthermore, we identified several indicative
behaviours for both fixation and critical thinking—the labels
in Table 2. For example, unthinking acceptance of TRS indi-
cates requirements fixation; questioning the reasonableness
of priority levels indicates critical thinking.

5.2 Implications

The interplay between fixation, critical thinking, creativity
and the presentation of desiderata as TRS has numerous im-
plications for SE professionals, researchers, and educators.

For professionals, the best way to present desiderata
involves trade-offs among many criteria including clarity,
understandability, flexibility, modifiability and, of course,
creativity ([100], [101]). Where creativity is a priority,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

9

TABLE 4
Theoretical Concept Definitions

Concept Definition

Specification formality The degree to which the problematic situation is presented clearly and precisely.
Requirements fixation The tendency to rely too heavily on given desiderata when designing a software system.
Critical thinking “Disciplined thinking that is clear, rational, open-minded, and informed by evidence” [12].
Creativity “production of novel and useful ideas by an individual or small group of individuals working together” [60].
Software engineering success Net impact of a system on stakeholders over time [24].

avoid TRS and over-structuring, over-simplifying and over-
rationalizing problem statements. Try to present desiderata
in ways that encourage skepticism and critical thinking.
Information presented to the designers should ideally be
less-structured and easily modifiable. In contrast, a clear,
well-structured TRS might help in high correctness of code,
which can increase the possibility of success of a software
developed for mission- or safety-critical domains.

For researchers, it is critical to abandon the naive view
that analysts elicit requirements and that design transforms
them into appropriate system features. This view obscures
the actual relationship between RE and design, which re-
mains contested and poorly understood. SE occurs in com-
plicated situations where stakeholders disagree on system
goals and desired features [20]. Analysts and users co-
construct evanescent preferences rather than eliciting firm
and robust requirements [6]. Design is a creative, impro-
vised, non-deductive process in which designers imagine
new systems rather than rearrange old ideas [102]. Expert
designers in other fields resist initial problem frames and
solution conjectures; they do not deliver requirements in a
box-checking manner [39]. Serious questions regarding how
best to record and present desiderata remain unanswered.
For now; however, we are confident that presenting desider-
ata in an TRS hinders creativity by inducing fixation and
hindering critical thinking.

Making concrete recommendations for SE education is
more difficult. Obviously, courses that present an outdated,
positivist view of RE should be updated. Non-empirical
legacy concepts such as the waterfall model and project
triangle should be replaced with evidence-based concepts
and theories. Beyond that, we want to recommend teaching
a host of underrepresented subjects including design think-
ing, creativity techniques and theories of cognitive biases.
However, SE curricula are already tight. Perhaps a more
tractable approach is to transition students to less and less
structured assignments as they advance. More open-ended
assignments with ambiguous goals, conflicting stakeholder
preferences, ill-structured problems and incomplete spec-
ifications should help prepare students for more realistic
software contexts.

5.3 Quality criteria and threats to validity

We see protocol studies as most consistent with critical
realism [103]. Critical realism is a body of philosophical
work that attempts to solve Hume’s problem of induction
by merging a realist ontology with a relativist ontology.
Critical realism is fundamentally different from both posi-
tivism and constructivism. Positivism (and falsificationism)
view reality as observer-independent, objective, measurable

and characterized by universal, deterministic, counterfac-
tual, causal laws. Constuctivism, meanwhile, views reality
as observer-dependent, subjective and devoid of univer-
sal laws because knowledge is context-dependent. Posi-
tivism embraces (epistemological) realism; Constructivism
embraces epistemological and ontological relativism.

In contrast, critical realism blends a realist ontology
(“transcendental realism”) with a relativist epistemology
(“critical naturalism”). In other words, critical realism as-
sumes that the phenomena that scientists study are real
whether they can be directly observed (e.g. people, length,
Mars) or not (e.g. electrons, creativity, quasars). But because
social reality resists experimental closure and is rich in un-
observable properties, reality is only imperfectly and “prob-
abilistically apprehensible”. Rather than discovering causal
laws, scientists therefore construct explanations based on
“generative mechanisms”—the powers objects have to in-
fluence each other.

Since critical realism is fundamentally different from
positivism and constructivism, it has different evaluation
criteria, namely—“ontological appropriateness”, “contin-
gent validity”, multivocality, “trustworthiness”, ”analytic
generalization” and “construct validity” [104]. These crite-
ria do not map neatly into either positivist criteria (inter-
nal validity, external validity, etc.) or constructivist criteria
(credibility, transferability, etc.)

Critical realism is ontologically appropriate because the
whole point of a protocol study is to explore cognitive
phenomena that are real but cannot be observed directly.
Contingent validity is the degree to which the study explores
generative mechanisms rather than deterministic causal
laws. Again, here we are explicitly concerned with exploring
the generative mechanism that accounts for design creativ-
ity.

Multivocality—the degree to which research integrates
diverse perspectives—is typically achieved through data
triangulation, which is difficult in a protocol study. Our
dialogue–based approach allows us to examine the state-
ments of each half of a participant-pair, as well as directly
observing and comparing pairs. However, we cannot cor-
roborate our findings against independent data sources such
as archival records, like in a case study. Moreover, brain
scans are not yet sophisticated enough to cross-check the
inferences we make from participant’s verbalizations.

Trustworthiness refers to the chain of evidence from
observations to conclusions (see Tables 1 and 2) and the
ability of an independent researcher to audit or replicate the
findings. We provide as much detail of our analysis process
as possible within space limitations, and all of the materials
necessary to run an identical study with new participants.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

10

However, for privacy reasons, we cannot publish the full
transcripts of the design sessions and therefore an indepen-
dent researcher cannot directly audit our coding.

As we refined the conceptualization of themes, we of-
ten renamed or merged multiple themes and their corre-
sponding labels. For example, the theme expressing values
was renamed to considering quality criteria and merged with
an earlier theme non-functional requirements, and the labels
discussing alternative ideas was renamed to discussing design
plans. Despite much refining of labels, the themes and their
relationships stabilized early and remained stable. The fre-
quencies of the labels (i.e., fixation and critical thinking) in
Table 2 are unweighted and do not provide evidence of the
total number of ideas gained or lost due to one instance of
critical thinking and fixation respectively. In other words,
one instance of fixation might be more or less important
than one instance of critical thinking for creativity.

Moreover, since creativity is only one of the many an-
tecedents of SE project success [24], less constrained and
restrictive presentations of desiderata may also undermine
success through some other mechanisms, e.g., legal or
mission/safety critical constraints. Furthermore, TRS could
affect creativity through mechanisms other than those con-
sidered in this study.

Analytic generalization refers to generalizing from obser-
vations to theory, rather than from a sample to a population.
We generalize from observations of designers to the theory
shown in Fig. 3.

A protocol study is non-statistical, non-sampling re-
search, using a convenience sample of participants com-
pleting a particular task in a particular environment. Our
participants were mostly male, non-native English speakers
working in English, completing a single, artificial task, in
an unfamiliar design domain, in an artificial environment,
using artificial task materials, while being watched. All of
these factors may have affected our resulted in unknown
ways. Results cannot be statistically generalized to different
people, other tasks, other environments, or other ways of
representing desiderata (e.g. user stories, goal models).

Construct validity refers the degree to which the opera-
tionalization and measurement of constructs supports scien-
tific inferences. The only constructs in this study are fixation
and critical thinking, which we operationalize by having an
expert judge identify them. However, this labeling process
is intrinsically subjective, so another analyst might label
the data differently. We mitigated this threat by having the
second and third authors review the first author’s coding,
leading to numerous revisions and clarifications. However,
a different research team might still produce different label-
ing.

5.4 Future research directions
We see several promising avenues for future work:

1) Experimentally comparing different representations
(e.g., user stories, use cases, code) of the same
desiderata to determine which representation is
most effective to foster creativity in different circum-
stances;

2) creating techniques, tools and practices for mod-
elling and managing ambiguity and conflict; and

3) using eye-tracking or protocol analysis to study
what professionals attend to and ignore while de-
signing software.

Moreover, requirements fixation is just one of several
cognitive biases that may hamper creativity in software
design. Future work should investigate related cognitive
phenomena including:

1) Confirmation bias—attending disproportionately to
information that confirms our current beliefs [72].

2) Miserly information processing—the tendency to
avoid deep or complex information processing [85]

3) Conceptual fixation—considering only one or a
small number of solution concepts [35].

4) Design fixation—sticking too closely to given or
known examples [105].

While confirmation bias, miserly information processing,
conceptual fixation and design fixation have all been studied
extensively, little work has investigated their effects on
software design in particular [106].

6 CONCLUSION

In summary, desiderata are things that project stakeholders
prefer, want or need in a software system. Desiderata can
be presented in many ways (e.g. templated requirements
specifications, user stories). Previous research showed that
presenting desiderata as templated requirements specifica-
tions led to less creative designs. We therefore conducted
a dialog-based protocol analysis to investigate the cognitive
mechanism by which templated specifications affects design
creativity. We analyzed the data in two ways: inductive
process coding and closed coding. Process coding revealed
seven kinds of design actions: making design moves, uncrit-
ically accepting, rejecting, grouping, questioning, assuming
and considering quality criteria. Closed coding showed that
actions associated with requirements fixation are signifi-
cantly more frequent than actions associated with critical
thinking.

These results suggest that presenting desiderata more re-
strictively as templated requirements specifications is asso-
ciated with less critical evaluation of task structure and less
critical thinking. In other words, templated requirements
specifications inhibit design creativity because designers get
fixated on desiderata presented (i.e. written) restrictively,
well-structured and constrained language, hindering critical
thinking.

This paper therefore makes three main contributions: (1)
it advances a theory that explains the (previously estab-
lished) relationship between templated requirements speci-
fications and design creativity; (2) it elaborates the concept
of requirements fixation; (3) it presents a simple taxonomy
of software design actions. However, our results do not
indicate that requirements analysis is useless or that more
analysis is counterproductive to creativity. The paper just
attempts to present the underlying cognitive mechanisms
explaining the effects of presenting desiderata in a very
specific way—as templated requirements specifications—on
design creativity.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

11

While previous experimental research has demonstrated
that presenting desiderata as templated requirements spec-
ifications reduces design creativity, our current research
explores the underlying cognitive mechanisms that explain
this relationship. The results of this study indicate that,
given templated requirements specifications, software de-
signers do not proceed as we might hope. Designers should
carefully evaluate each desideratum before accepting or
rejecting it for articulable reasons. Our observations suggest
that designers tend neither to critically evaluate require-
ments nor to reject questionable ones.

7 DATA AVAILABILITY

A comprehensive replication package including all the task
documents (i.e., a list of prioritized TRS, demographic ques-
tionnaire and blank design template) and the results of the
process coding analysis with example quotes are stored
in the Zenodo open data archive [107]. (Note: we do not
include the transcribed recordings in the replication package
to maintain the anonymity of the participants).

ACKNOWLEDGMENT

This study was partially supported by the HPY: Research
Foundation (HPY:n Tutkimussäätiö Apurahat) grant.

REFERENCES

[1] T. Chow and D.-B. Cao, “A survey study of critical success factors
in agile software projects,” Journal of Systems and Software, vol. 81,
no. 6, pp. 961–971, 2008.

[2] R. Schmidt, K. Lyytinen, and P. C. Mark Keil, “Identifying
software project risks: An international delphi study,” Journal of
Management Information Systems, vol. 17, no. 4, pp. 5–36, 2001.

[3] IEEE Computer Society. Software Engineering Standards Com-
mittee and IEEE-SA Standards Board, “IEEE recommended prac-
tice for software requirements specifications,” Institute of Electri-
cal and Electronics Engineers, standard, 1998.

[4] J. Mund, D. M. Fernandez, H. Femmer, and J. Eckhardt, “Does
quality of requirements specifications matter? combined results
of two empirical studies,” in International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2015 ACM/IEEE.
Beijing, China: IEEE, 2015, pp. 1–10.

[5] P. Ralph, “The illusion of requirements in software develop-
ment,” Requirements Engineering, vol. 18, no. 3, pp. 293–296, 2013.

[6] S. Lichtenstein and P. Slovic, The construction of preference. Cam-
bridge, UK: Cambridge University Press, 2006.

[7] P. Rodrı́guez, E. Mendes, and B. Turhan, “Key stakeholders’
value propositions for feature selection in software-intensive
products: An industrial case study,” IEEE Transactions on Software
Engineering, vol. 46, no. 12, pp. 1340–1363, 2018.

[8] T. Sedano, P. Ralph, and C. Péraire, “The product backlog,” in
Proceedings of the 41st International Conference on Software Engi-
neering. Montreal, Canada: IEEE, 2019, pp. 200–211.

[9] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements fixation,”
in Proceedings of the 36th International Conference on Software Engi-
neering. Hyderabad, India: ACM, 2014, pp. 895–906.

[10] R. Mohanani, B. Turhan, and P. Ralph, “Requirements framing af-
fects design creativity,” IEEE Transactions on Software Engineering,
vol. 47, no. 5, pp. 936–947, 2021.

[11] P. Ralph, “Toward a theory of debiasing software development,”
in EuroSymposium on Systems Analysis and Design. Gdańsk,
Poland: Springer, 2011, pp. 92–105.

[12] Dictionary.com, “Critical thinking,” https://www.dictionary.
com/browse/critical-thinking, 2019, accessed: 2019-07-10.

[13] F. P. Brooks Jr, The design of design: Essays from a computer scientist.
Massachusetts, USA: Pearson Education, 2010.

[14] A. T. Bahill and F. F. Dean, “The requirements discovery process,”
in INCOSE International Symposium, vol. 7, no. 1. Wiley Online
Library, 1997, pp. 340–347.

[15] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated
checking of conformance to requirements templates using natural
language processing,” IEEE Transactions on Software Engineering,
vol. 41, no. 10, pp. 944–968, 2015.

[16] M. Jackson, “The world and the machine,” in 1995 17th Interna-
tional Conference on Software Engineering. IEEE, 1995, pp. 283–283.

[17] D. L. Parnas and J. Madey, “Functional documents for computer
systems,” Science of Computer Programming, vol. 25, no. 1, pp. 41–
61, 1995.

[18] P. Ralph, “The two paradigms of software development re-
search,” Science of Computer Programming, vol. 156, pp. 68–89,
2018.

[19] J. A. Goguen and M. Jirotka, Requirements Engineering: Social and
Technical Issues. London, UK: Academic, 1994.

[20] P. Checkland and J. Scholes, “Soft systems methodology: a
thirty year retrospective,” Systems Research and Behavioral Science,
vol. 17, no. S1, pp. 11–58, 2000.

[21] B. Nuseibeh, J. Kramer, and A. Finkelstein, “Viewpoints: mean-
ingful relationships are difficult!” in Proceedings of 25th Interna-
tional Conference on Software Engineering, 2003. IEEE, 2003, pp.
676–681.

[22] A. Van Lamsweerde, R. Darimont, and E. Letier, “Managing con-
flicts in goal-driven requirements engineering,” IEEE Transactions
on Software Engineering, vol. 24, no. 11, pp. 908–926, 1998.

[23] L. Goldin and D. M. Berry, “Abstfinder, a prototype natural lan-
guage text abstraction finder for use in requirements elicitation,”
Automated Software Engineering, vol. 4, no. 4, pp. 375–412, 1997.

[24] P. Ralph and P. Kelly, “The dimensions of software engineering
success,” in Proceedings of the 36th International Conference on
Software Engineering. Hyderabad, India: ACM, 2014, pp. 24–35.

[25] C. Potts and W. C. Newstetter, “Naturalistic inquiry and require-
ments engineering: reconciling their theoretical foundations,”
in Proceedings of ISRE’97: 3rd IEEE International Symposium on
Requirements Engineering. IEEE, 1997, pp. 118–127.

[26] M. Jackson and P. Zave, “Domain descriptions,” in Proceedings
of the IEEE International Symposium on Requirements Engineering.
IEEE, 1993, pp. 56–64.

[27] D. H. Jonassen, “Instructional design models for well-structured
and iii-structured problem-solving learning outcomes,” Educa-
tional Technology Research and Development, vol. 45, no. 1, pp. 65–
94, 1997.

[28] P. Ralph and R. Mohanani, “Is requirements engineering inher-
ently counterproductive?” in 2015 IEEE/ACM 5th International
Workshop on the Twin Peaks of Requirements and Architecture. IEEE,
2015, pp. 20–23.

[29] N. Cross, “Expertise in design: an overview,” Design Studies,
vol. 25, no. 5, pp. 427–441, 2004.

[30] J. Wirth, J. Künsting, and D. Leutner, “The impact of goal speci-
ficity and goal type on learning outcome and cognitive load,”
Computers in Human Behavior, vol. 25, no. 2, pp. 299–305, 2009.

[31] T. B. Ward, M. J. Patterson, and C. M. Sifonis, “The role of
specificity and abstraction in creative idea generation,” Creativity
Research Journal, vol. 16, no. 1, pp. 1–9, 2004.

[32] D. G. Jansson and S. M. Smith, “Design fixation,” Design Studies,
vol. 12, no. 1, pp. 3–11, 1991.

[33] R. Guindon, “Knowledge exploited by experts during software
system design,” International Journal of Man-Machine Studies,
vol. 33, no. 3, pp. 279–304, 1990.

[34] C. Kruger and N. Cross, “Solution driven versus problem driven
design: strategies and outcomes,” Design Studies, vol. 27, no. 5,
pp. 527–548, 2006.

[35] R. J. Youmans and T. Arciszewski, “Design fixation: Classifica-
tions and modern methods of prevention,” AI EDAM, vol. 28,
no. 2, pp. 129–137, 2014.

[36] R. A. Finke, “Imagery, creativity, and emergent structure,” Con-
sciousness and Cognition, vol. 5, no. 3, pp. 381–393, 1996.

[37] O. Akin et al., “Expertise of the architect,” Expert Systems for
Engineering Design, pp. 173–196, 1988.

[38] N. Cross, K. Dorst, and N. Roozenburg, “Research in design
thinking,” Proceedings of a Workshop Meeting Held at the Faculty
of Industrial Design Engineering, 1992.

[39] N. Cross, “Design cognition: Results from protocol and other
empirical studies of design activity,” in Design Knowing and
Learning: Cognition in Design Education. Oxford, UK: Elsevier,
2001, pp. 79–103.

https://www.dictionary.com/browse/critical-thinking
https://www.dictionary.com/browse/critical-thinking

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

12

[40] A. Niknafs and D. Berry, “The impact of domain knowledge on
the effectiveness of requirements engineering activities,” Empiri-
cal Software Engineering, vol. 22, no. 1, pp. 80–133, 2017.

[41] G. Mehrotra and D. M. Berry, “How to benefit from newbies’
domain ignorance in software development projects,” Science of
Computer Programming, vol. 204, p. 102593, 2021.

[42] N. Maiden, S. Jones, K. Karlsen, R. Neill, K. Zachos, and A. Milne,
“Requirements engineering as creative problem solving: A re-
search agenda for idea finding,” in IEEE 18th International Re-
quirements Engineering Conference (RE). IEEE, 2010, pp. 57–66.

[43] N. Maiden and A. Gizikis, “Where do requirements come from?”
IEEE Software, vol. 18, no. 5, pp. 10–12, 2001.

[44] S. Chakraborty, S. Sarker, and S. Sarker, “An exploration into
the process of requirements elicitation: A grounded approach,”
Journal of the Association for Information Systems, vol. 11, no. 4, p.
212, 2010.

[45] K. Schmid, “A study on creativity in requirements engineering,”
Softwaretechnik-Trends, vol. 26, no. 1, pp. 20–21, 2006.

[46] B. Crawford, C. L. de la Barra, R. Soto, and E. Monfroy, “Agile
software engineering as creative work,” in Proceedings of the
5th International Workshop on Co-operative and Human Aspects of
Software Engineering. IEEE Press, 2012, pp. 20–26.

[47] N. Maiden, A. Gizikis, and S. Robertson, “Provoking creativity:
Imagine what your requirements could be like,” IEEE Software,
vol. 21, no. 5, pp. 68–75, 2004.

[48] R. Horowitz, “Creative problem solving in engineering design,”
PhD. Diss., Tel-Aviv University, 1999.

[49] L. Nguyen and G. Shanks, “A framework for understanding
creativity in requirements engineering,” Information and Software
Technology, vol. 51, no. 3, pp. 655–662, 2009.

[50] J. Guilford, “Three faces of intellect,” Teaching Gifted Students: A
Book of Readings, p. 7, 1965.

[51] M. Michalko, Thinkertoys: A Candbook of Creative-Thinking Tech-
niques. Random House Digital, Inc., 2006.

[52] R. B. Svensson and M. Taghavianfar, “Selecting creativity tech-
niques for creative requirements: An evaluation of four tech-
niques using creativity workshops,” in 2015 IEEE 23rd Interna-
tional Requirements Engineering Conference (RE). IEEE, 2015, pp.
66–75.

[53] N. Maiden, S. Manning, S. Robertson, and J. Greenwood, “Inte-
grating creativity workshops into structured requirements pro-
cesses,” in Proceedings of the 5th Conference on Designing Interactive
Systems: Processes, Practices, Methods and Techniques. Cambridge,
USA: ACM, 2004, pp. 113–122.

[54] P. K. Murukannaiah, N. Ajmeri, and M. P. Singh, “Acquiring cre-
ative requirements from the crowd: Understanding the influences
of personality and creative potential in crowd re,” in 2016 IEEE
24th International Requirements Engineering Conference (RE). IEEE,
2016, pp. 176–185.

[55] A. van Lamsweerde, “Goal-oriented requirements enginering:
a roundtrip from research to practice [enginering read engi-
neering],” in Proceedings of 12th IEEE International Requirements
Engineering Conference, 2004. IEEE, 2004, pp. 4–7.

[56] J. Horkoff, N. Maiden, and J. Lockerbie, “Creativity and goal
modeling for software requirements engineering,” in Proceedings
of the 2015 ACM SIGCHI Conference on Creativity and Cognition,
2015, pp. 165–168.

[57] M. A. Boden, The creative mind: Myths and Mechanisms. Psychol-
ogy Press, 2004.

[58] N. Maiden and S. Robertson, “Integrating creativity into require-
ments processes: Experiences with an air traffic management
system,” in 13th IEEE International Conference on Requirements
Engineering (RE’05). IEEE, 2005, pp. 105–114.

[59] T. Bhowmik, N. Niu, A. Mahmoud, and J. Savolainen, “Auto-
mated support for combinational creativity in requirements engi-
neering,” in 2014 IEEE 22nd International Requirements Engineering
Conference (RE). IEEE, 2014, pp. 243–252.

[60] T. M. Amabile, “A model of creativity and innovation in orga-
nizations,” Research in Organizational Behavior, vol. 10, no. 1, pp.
123–167, 1988.

[61] R. Mohanani, P. Ram, A. Lasisi, P. Ralph, and B. Turhan, “Percep-
tions of creativity in software engineering research and practice,”
in 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). IEEE, 2017, pp. 210–217.

[62] R. J. Sternberg, Handbook of Creativity. Cambridge University
Press, 1999.

[63] M. Rhodes, “An analysis of creativity,” The Phi Delta Kappan,
vol. 42, no. 7, pp. 305–310, 1961.

[64] J. A. Plucker and M. C. Makel, “Assessment of creativity,” The
Cambridge Handbook of Creativity, pp. 48–73, 2010.

[65] R. E. Mayer, “22 fifty years of creativity research,” Handbook of
Creativity, vol. 449, 1999.

[66] H. H. Christiaans, “Creativity as a design criterion,” Communica-
tion Research Journal, vol. 14, no. 1, pp. 41–54, 2002.

[67] H. G. Nelson and E. Stolterman, The design way: Intentional change
in an unpredictable world: Foundations and fundamentals of design
competence. Educational Technology, 2003.

[68] A. Tversky and D. Kahneman, “Judgment under uncertainty:
Heuristics and biases,” Science, vol. 185, no. 4157, pp. 1124–1131,
1974.

[69] A. Tang and Antony, “Software designers, are you biased?” in
Proceeding of the 6th international workshop on Sharing and Reusing
Architectural Knowledge - SHARK ’11. New York, New York, USA:
ACM Press, 2011, p. 1.

[70] C. Mair and M. Shepperd, “Human judgement and software met-
rics,” in Proceeding of the 2nd International Workshop on Emerging
Trends in Software Metrics - WETSoM ’11. New York, New York,
USA: ACM Press, 2011, p. 81.

[71] I. Salman, B. Turhan, and S. Vegas, “A controlled experiment
on time pressure and confirmation bias in functional software
testing,” Empirical Software Engineering, vol. 24, no. 4, pp. 1–35,
2018.

[72] G. Calikli and A. Bener, “Empirical analyses of the factors af-
fecting confirmation bias and the effects of confirmation bias
on software developer/tester performance,” in Proceedings of
the 6th International Conference on Predictive Models in Software
Engineering. Timisoara, Romania: ACM, 2010, p. 10.

[73] G. J. Browne and V. Ramesh, “Improving information require-
ments determination: a cognitive perspective,” Information &
Management, vol. 39, no. 8, pp. 625–645, 2002.

[74] N. Chotisarn and N. Prompoon, “Forecasting software damage
rate from cognitive bias in software requirements gathering and
specification process,” in 2013 IEEE Third International Conference
on Information Science and Technology (ICIST). Yangzhou, Jiangsu,
China: IEEE, mar 2013, pp. 951–956.

[75] M. Jorgensen and S. Grimstad, “Software Development Estima-
tion Biases: The Role of Interdependence,” IEEE Transactions on
Software Engineering, vol. 38, no. 3, pp. 677–693, may 2012.

[76] A. T. Purcell and J. S. Gero, “Design and other types of fixation,”
Design Studies, vol. 17, no. 4, pp. 363–383, 1996.

[77] M. Perttula and P. Sipilä, “The idea exposure paradigm in design
idea generation,” Journal of Engineering Design, vol. 18, no. 1, pp.
93–102, 2007.

[78] E. G. Chrysikou and R. W. Weisberg, “Following the wrong foot-
steps: fixation effects of pictorial examples in a design problem-
solving task.” Journal of Experimental Psychology: Learning, Mem-
ory, and Cognition, vol. 31, no. 5, p. 1134, 2005.

[79] Z. Lujun, “Design fixation and solution quality under expo-
sure to example solution,” in IEEE 2nd International Conference
on Computing, Control and Industrial Engineering (CCIE), vol. 1.
Singapore: IEEE, 2011, pp. 129–132.

[80] C. Toh, S. Miller, and G. Kremer, “Mitigating design fixation
effects in engineering design through product dissection activ-
ities,” in Design Computing and Cognition’12. Dordrecht, Nether-
lands: Springer, 2014, pp. 95–113.

[81] R. J. Youmans, “The effects of physical prototyping and group
work on the reduction of design fixation,” Design Studies, vol. 32,
no. 2, pp. 115–138, 2011.

[82] B. Nuseibeh, S. Easterbrook, and A. Russo, “Leveraging incon-
sistency in software development,” Computer, vol. 33, no. 4, pp.
24–29, 2000.

[83] D. Zahner, J. V. Nickerson, B. Tversky, J. E. Corter, and J. Ma,
“A fix for fixation? rerepresenting and abstracting as creative
processes in the design of information systems,” AI EDAM,
vol. 24, no. 2, pp. 231–244, 2010.

[84] J. Kim and H. Ryu, “A design thinking rationality framework:
Framing and solving design problems in early concept genera-
tion,” Human–Computer Interaction, vol. 29, no. 5-6, pp. 516–553,
2014.

[85] K. E. Stanovich, What intelligence tests miss: The psychology of
rational thought. USA: Yale University Press, 2009.

[86] E. I. Karac, B. Turhan, and N. Juristo, “A controlled experiment
with novice developers on the impact of task description gran-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3112503, IEEE
Transactions on Software Engineering

13

ularity on software quality in test-driven development,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[87] K. A. Ericsson and H. A. Simon, Protocol analysis: Verbal reports as
data. USA: the MIT Press, 1984.

[88] S. Xu and V. Rajlich, “Dialog-based protocol: an empirical re-
search method for cognitive activities in software engineering,”
in Empirical Software Engineering, 2005. Noosa Heads, Australia:
IEEE, 2005, pp. 10–pp.

[89] K. Dorst and J. Dijkhuis, “Comparing paradigms for describing
design activity,” Design Studies, vol. 16, no. 2, pp. 261–274, 1995.

[90] A. Hashem, M. T. Chi, and C. P. Friedman, “Medical errors as a
result of specialization,” Journal of Biomedical Informatics, vol. 36,
no. 1-2, pp. 61–69, 2003.

[91] J. Hughes and S. Parkes, “Trends in the use of verbal protocol
analysis in software engineering research,” Behaviour & Informa-
tion Technology, vol. 22, no. 2, pp. 127–140, 2003.

[92] J. Mingers, “Realizing information systems: critical realism as an
underpinning philosophy for information systems,” Information
and Organization, vol. 14, no. 2, pp. 87–103, 2004.

[93] E. D. Canedo and R. P. da Costa, “The use of design thinking in
agile software requirements survey: a case study,” in International
Conference of Design, User Experience, and Usability. Springer, 2018,
pp. 642–657.

[94] C. Vetterli, W. Brenner, F. Uebernickel, and C. Petrie, “From
palaces to yurts: Why requirements engineering needs design
thinking,” IEEE Internet Computing, vol. 17, no. 2, pp. 91–94, 2013.

[95] N. Carroll and I. Richardson, “Aligning healthcare innova-
tion and software requirements through design thinking,” in
2016 IEEE/ACM International Workshop on Software Engineering in
Healthcare Systems (SEHS). IEEE, 2016, pp. 1–7.

[96] P. Ralph, “Fundamentals of software design science,” Ph.D. dis-
sertation, University of British Columbia, 2010.

[97] J. Saldaña, The coding manual for qualitative researchers. UK: Sage,
2015.

[98] D. S. Cruzes and T. Dyba, “Recommended steps for thematic
synthesis in software engineering,” in 2011 International Sympo-
sium on Empirical Software Engineering and Measurement. Banff,
Canada: IEEE, 2011, pp. 275–284.

[99] M.-L. Chiu, “Design moves in situated design with case-based
reasoning,” Design Studies, vol. 24, no. 1, pp. 1–25, 2003.

[100] L. A. Belady and M. M. Lehman, “A model of large program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 225–252,
1976.

[101] D. M. Berry, “The inevitable pain of software development: Why
there is no silver bullet,” in International Workshop On Radical
Innovations Of Software and Systems Engineering in the Future.
Springer, 2002, pp. 50–74.

[102] D. A. Schon, The reflective practitioner: How professionals think in
action. London, UK: Basic books, 1984, vol. 5126.

[103] M. Archer, R. Bhaskar, A. Collier, T. Lawson, and A. Norrie,
Critical realism: Essential readings. Routledge, 2013.

[104] M. Healy and C. Perry, “Comprehensive criteria to judge va-
lidity and reliability of qualitative research within the realism
paradigm,” Qualitative market research: An international journal,
vol. 3, no. 3, pp. 118–126, 2000.

[105] R. J. Youmans, “Design fixation in the wild: design environments
and their influence on fixation,” The Journal of Creative Behavior,
vol. 45, no. 2, pp. 101–107, 2011.

[106] R. Mohanani, I. Salman, B. Turhan, P. Rodrı́guez, and P. Ralph,
“Cognitive biases in software engineering: A systematic mapping
study,” IEEE Transactions on Software Engineering, vol. 46, no. 12,
pp. 1318–1339, 2020.

[107] R. Mohanani, P. Ralph, B. Turhan, and V. Mandic, “How
Templated Requirements Specifications Inhibit Creativity in
Software Engineering (Replication Package),” Apr. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.4678669

Rahul Mohanani, PhD (Oulu University), MSc
(Lancaster University), B.Eng. (Mumbai Univer-
sity), is a senior scientist at Fortiss GmbH, Mu-
nich and an Adjunct Asst. Professor of Software
Engineering at IIIT Delhi. His research, intersect-
ing empirical SE, human aspects and design
thinking, has been published in premier venues
including the ACM/IEEE International Confer-
ence on Software Engineering and IEEE Trans-
actions on Software Engineering. For more infor-
mation, please visit http://rahulmohanani.net

Paul Ralph, PhD (British Columbia), B.Sc. /
B.Comm (Memorial), is an award-winning sci-
entist, author, consultant and Professor of Soft-
ware Engineering at Dalhousie University. His
research intersects empirical software engineer-
ing, human-computer interaction and project
management. Paul is a member of the IEEE
Transactions on Software Engineering review
board and chair of the ACM Paper and Peer Re-
view Quality Task Force. For more information,
please visit: https://paulralph.name.

Burak Turhan, PhD (Bog̃aziçi University), is a
Professor of Software Engineering at the Univer-
sity of Oulu and an Adjunct Professor (Research)
in the Faculty of IT at Monash University. His re-
search focuses on empirical software engineer-
ing, software analytics, quality assurance and
testing, human factors, and (agile) development
processes. He is a Senior Associate Editor of
Journal of Systems and Software, an Associate
Editor of ACM Transactions on Software Engi-
neering and Methodology and Automated Soft-

ware Engineering, an Editorial Board Member of Empirical Software En-
gineering, Information and Software Technology, and Software Quality
Journal, and a Senior Member of ACM and IEEE. For more information,
please visit: https://turhanb.net.

Vladimir Mandić, PhD (Oulu University), is an
assistant professor of SE at University of Novi
Sad, Serbia. He received his PhD degree in
Information Processing Science and SE from the
University of Oulu, Finland, and M.Sc.E.E from
the University of Novi Sad, Serbia. His areas of
interest are software process improvement, em-
pirical software engineering, goal-driven mea-
surement approaches, technical debt and value-
based software engineering. He is a member of
the IEEE Computer Society.

https://doi.org/10.5281/zenodo.4678669
http://rahulmohanani.net
https://paulralph.name
https://turhanb.net

